Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

add batch_norm op with test and benchmark #559

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions benchmark/data/all_benchmark_data.csv
Original file line number Diff line number Diff line change
Expand Up @@ -769,3 +769,33 @@ distill_jsd_loss,torch,full,memory,MB,BT,B x T,1024,16174.0390625,16174.0390625,
distill_jsd_loss,torch,full,memory,MB,BT,B x T,2048,23713.05078125,23713.05078125,23713.05078125,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
distill_jsd_loss,torch,full,memory,MB,BT,B x T,4096,38791.07421875,38791.07421875,38791.07421875,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
distill_jsd_loss,torch,full,memory,MB,BT,B x T,8192,68947.1015625,68947.1015625,68947.1015625,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
batch_norm,liger,forward,speed,ms,N,hidden size,1024,0.13689599931240082,0.13616639375686646,0.13795199990272522,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:43,0.5.2
batch_norm,liger,forward,speed,ms,N,hidden size,2048,0.26447999477386475,0.26284798979759216,0.2656959891319275,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:43,0.5.2
batch_norm,liger,forward,speed,ms,N,hidden size,4096,0.525056004524231,0.5232831835746765,0.5266559720039368,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:43,0.5.2
batch_norm,liger,forward,speed,ms,N,hidden size,8192,1.05131196975708,1.0489856004714966,1.0533759593963623,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:43,0.5.2
batch_norm,liger,forward,speed,ms,N,hidden size,16384,2.13972806930542,2.1362624168395996,2.143014430999756,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:43,0.5.2
batch_norm,huggingface,forward,speed,ms,N,hidden size,1024,0.041471999138593674,0.0398080013692379,0.042688000947237015,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:46,0.5.2
batch_norm,huggingface,forward,speed,ms,N,hidden size,2048,0.06825599819421768,0.06672000139951706,0.0695360004901886,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:46,0.5.2
batch_norm,huggingface,forward,speed,ms,N,hidden size,4096,0.1191679984331131,0.11868800222873688,0.11961600184440613,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:46,0.5.2
batch_norm,huggingface,forward,speed,ms,N,hidden size,8192,0.21347199380397797,0.21296000480651855,0.21398399770259857,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:46,0.5.2
batch_norm,huggingface,forward,speed,ms,N,hidden size,16384,0.4029119908809662,0.4023999869823456,0.40348801016807556,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:46,0.5.2
batch_norm,liger,full,speed,ms,N,hidden size,1024,0.3394879996776581,0.3375680148601532,0.3413119912147522,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:50,0.5.2
batch_norm,liger,full,speed,ms,N,hidden size,2048,0.6499840021133423,0.6464319825172424,0.6534016132354736,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:50,0.5.2
batch_norm,liger,full,speed,ms,N,hidden size,4096,1.2944639921188354,1.291468858718872,1.297875165939331,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:50,0.5.2
batch_norm,liger,full,speed,ms,N,hidden size,8192,2.5837440490722656,2.579263925552368,2.5880000591278076,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:50,0.5.2
batch_norm,liger,full,speed,ms,N,hidden size,16384,5.309120178222656,5.301023960113525,5.314540863037109,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:50,0.5.2
batch_norm,huggingface,full,speed,ms,N,hidden size,1024,0.08718399703502655,0.08614400029182434,0.08816000074148178,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,speed,ms,N,hidden size,2048,0.14828799664974213,0.14732800424098969,0.14927999675273895,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,speed,ms,N,hidden size,4096,0.25726401805877686,0.25622400641441345,0.2583935856819153,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,speed,ms,N,hidden size,8192,0.4660159945487976,0.46483200788497925,0.4671808183193207,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,speed,ms,N,hidden size,16384,0.880128026008606,0.8787840008735657,0.8814719915390015,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,liger,full,memory,MB,N,hidden size,1024,80.04736328125,80.04736328125,80.04736328125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,liger,full,memory,MB,N,hidden size,2048,160.09423828125,160.09423828125,160.09423828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,liger,full,memory,MB,N,hidden size,4096,320.18798828125,320.18798828125,320.18798828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,liger,full,memory,MB,N,hidden size,8192,640.37548828125,640.37548828125,640.37548828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,liger,full,memory,MB,N,hidden size,16384,1280.75048828125,1280.75048828125,1280.75048828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,memory,MB,N,hidden size,1024,80.05517578125,80.05517578125,80.05517578125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,memory,MB,N,hidden size,2048,160.10986328125,160.10986328125,160.10986328125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,memory,MB,N,hidden size,4096,320.21923828125,320.21923828125,320.21923828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,memory,MB,N,hidden size,8192,640.43798828125,640.43798828125,640.43798828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
batch_norm,huggingface,full,memory,MB,N,hidden size,16384,1280.87548828125,1280.87548828125,1280.87548828125,"{""M"": 4096, ""dtype"": ""torch.float32"", ""eps"": 1e-06}",NVIDIA H100 80GB HBM3,2025-02-07 19:40:52,0.5.2
125 changes: 125 additions & 0 deletions benchmark/scripts/benchmark_batch_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import torch
import triton

from utils import QUANTILES
from utils import SingleBenchmarkRunInput
from utils import SingleBenchmarkRunOutput
from utils import _test_memory
from utils import parse_benchmark_script_args
from utils import run_benchmarks

from liger_kernel.transformers.batch_norm import LigerBatchNorm
from liger_kernel.utils import infer_device

device = infer_device()


def bench_speed_batch_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
N = input.x
provider = input.kernel_provider
mode = input.kernel_operation_mode
extra_benchmark_config = input.extra_benchmark_config
M = extra_benchmark_config["M"]
eps = extra_benchmark_config["eps"]
dtype = extra_benchmark_config["dtype"]

x_shape = (M, N)
triton_bn = LigerBatchNorm(hidden_size=N).to(device)
torch_bn = torch.nn.BatchNorm1d(N, eps=eps).to(device)

x = torch.randn(x_shape, dtype=dtype, device=device)
dy = torch.randn_like(x)
x.requires_grad_(True)

def y_fwd():
if provider == "liger":
return triton_bn(x)
if provider == "huggingface":
return torch_bn(x)

if mode == "forward":
ms_50, ms_20, ms_80 = triton.testing.do_bench(y_fwd, quantiles=QUANTILES, grad_to_none=[x], rep=500)
elif mode == "backward":
y = y_fwd()
ms_50, ms_20, ms_80 = triton.testing.do_bench(
lambda: y.backward(dy, retain_graph=True),
quantiles=QUANTILES,
grad_to_none=[x],
rep=500,
)
elif mode == "full":

def full():
y = y_fwd()
y.backward(dy, retain_graph=True)

ms_50, ms_20, ms_80 = triton.testing.do_bench(full, quantiles=QUANTILES, grad_to_none=[x], rep=500)

return SingleBenchmarkRunOutput(
y_20=ms_20,
y_50=ms_50,
y_80=ms_80,
)


def bench_memory_batch_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
N = input.x
provider = input.kernel_provider
dtype = input.extra_benchmark_config["dtype"]
M = input.extra_benchmark_config["M"]
eps = input.extra_benchmark_config["eps"]

x_shape = (M, N)

triton_bn = LigerBatchNorm(hidden_size=N).to(device)
torch_bn = torch.nn.BatchNorm1d(N, eps=eps).to(device)

x = torch.randn(x_shape, dtype=dtype, device=device)
dy = torch.randn_like(x)
x.requires_grad_(True)

def y_fwd():
if provider == "liger":
return triton_bn(x)
if provider == "huggingface":
return torch_bn(x)

def full():
y = y_fwd()
y.backward(dy, retain_graph=True)

mem_50, mem_20, mem_80 = _test_memory(full, quantiles=QUANTILES)
return SingleBenchmarkRunOutput(
y_20=mem_20,
y_50=mem_50,
y_80=mem_80,
)


if __name__ == "__main__":
args = parse_benchmark_script_args()

common_configs = {
"kernel_name": "batch_norm",
"x_name": "N",
"x_label": "hidden size",
"x_values": [2**i for i in range(10, 15)], # Range of hidden size values
"kernel_providers": ["liger", "huggingface"],
"extra_benchmark_configs": [{"M": 4096, "dtype": torch.float32, "eps": 1e-6}],
"overwrite": args.overwrite,
}

run_benchmarks(
bench_test_fn=bench_speed_batch_norm,
kernel_operation_modes=["forward", "full"],
metric_name="speed",
metric_unit="ms",
**common_configs,
)
run_benchmarks(
bench_test_fn=bench_memory_batch_norm,
kernel_operation_modes=["full"],
metric_name="memory",
metric_unit="MB",
**common_configs,
)
Loading