- ORB
- SIFT
- Harris
- SuperPoint
- ALIKE
- XFeat
- D2-Net
- DISK
- R2D2
- SFD2
- 暴力匹配
- lightglue
- 光流
- AUC 基于 MegaDepth 数据集
- MHA 基于 Hpatch 数据集
- 重复率 基于 Hpatch 数据集
- 基础矩阵 基于TartanAir数据集
- VO里程计 基于KITTI数据集
- 构造docker镜像
mkdir keypoint_bench && cd keypoint_bench
wget https://github.com/linyicheng1/keypoint_bench/blob/main/Dockerfile
docker build -t keypoint_bench:v1 .
需要等待10-20分钟,下载依赖并且构建镜像
- 运行docker容器
docker run -it --gpus all -u root -p 2223:22 -v /数据集下载位置/:/home/data/ keypoint_bench:v1
- 运行python程序
在运行程序前需要修改配置文件中包含的数据集路径,按自己的实际情况修改/home/code/keypoint_bench/config/config.yaml
文件
运行程序
cd /home/code/keypoint_bench
python3 main.py --config_file config/config.yaml test
默认得到ALIKE的重复率计算结果
repeatability 0.3157695 rep_mean_err 1.2313193
值得注意的是,许多论文为了指标更高,往往提取更多的特征,并且非极大值抑制范围很小,这样在实际使用的时候会造成特征扎堆的现象。因此,我们使用的参数都是特征点数量较少,并且非极大值抑制的窗口比较大,这更符合实际情况。尽管这样往往会导致指标较低。
- nms_dist: 6
- min_score: 0.0
- top_k: 1000
- threshold: 0
- border_dist: 8
- metric: euclidean
- max_distance: 5
- cross_check: True
- distance: 10
- win_size: 21
- levels: 3
- interation: 40
特征点 | Harris | ALIKE | SuperPoint | XFeat | D2-Net | DISK | R2D2 | SFD2 | LGood (Ours) | EdgePoint (Ours) |
---|---|---|---|---|---|---|---|---|---|---|
重复率 | 0.204 | 0.319 | 0.359 | 0.177 | 0.179 | 0.290 | 0.331 | 0.381 | 0.402 | 0.349 |
平均误差 | 1.861 | 1.317 | 1.466 | 1.508 | 2.022 | 1.473 | 1.483 | 1.507 | 1.447 | 1.390 |
特征点 | ALIKE | SuperPoint | XFeat | D2-Net | DISK | R2D2 | SFD2 | EdgePoint (Ours) |
---|---|---|---|---|---|---|---|---|
MHA@3 | 0.491 | 0.437 | 0.372 | 0.016 | 0.254 | 0.335 | 0.467 | 0.461 |
MHA@5 | 0.583 | 0.569 | 0.511 | 0.105 | 0.410 | 0.488 | 0.572 | 0.572 |
MHA@7 | 0.657 | 0.613 | 0.589 | 0.220 | 0.525 | 0.555 | 0.620 | 0.640 |
特征点 | ALIKE | SuperPoint | XFeat | D2-Net | DISK | R2D2 | SFD2 | EdgePoint (Ours) |
---|---|---|---|---|---|---|---|---|
AUC@5 | 0.375 | 0.192 | 0.200 | 0.126 | 0.249 | 0.247 | 0.295 | 0.304 |
AUC@10 | 0.527 | 0.323 | 0.351 | 0.240 | 0.403 | 0.360 | 0.442 | 0.448 |
AUC@20 | 0.661 | 0.461 | 0.516 | 0.386 | 0.562 | 0.464 | 0.578 | 0.581 |
误差
特征点 | ALIKE | SuperPoint | XFeat | D2-Net | DISK | R2D2 | SFD2 | EdgePoint (Ours) | LGood (Ours) | LET-NET (Ours) | Harris |
---|---|---|---|---|---|---|---|---|---|---|---|
MH000 | 9.559 | 9.441 | 9.609 | 9.868 | 9.466 | 9.888 | 9.355 | 9.712 | 7.374 | 9.015 | 9.585 |
MH001 | 11.460 | 11.719 | 12.201 | 11.004 | 9.470 | 11.784 | 11.738 | 11.260 | 7.872 | 9.774 | 11.376 |
MH002 | 9.459 | 9.480 | 9.947 | 9.789 | 9.069 | 9.301 | 9.534 | 9.372 | 7.357 | 7.855 | 9.796 |
MH003 | 14.128 | 13.837 | 14.505 | 12.925 | 12.871 | 13.966 | 13.831 | 13.573 | 8.649 | 10.065 | 13.607 |
MH004 | 21.936 | 22.745 | 22.466 | 19.999 | 20.051 | 21.898 | 22.115 | 20.900 | 10.554 | 13.167 | 21.654 |
MH005 | 7.856 | 7.895 | 7.879 | 7.855 | 7.093 | 7.846 | 7.870 | 7.996 | 7.213 | 7.158 | 7.778 |
MH006 | 13.233 | 12.846 | 13.555 | 12.308 | 12.698 | 13.111 | 13.145 | 12.763 | 8.304 | 10.052 | 12.838 |
MH007 | 10.612 | 10.599 | 10.861 | 10.438 | 9.789 | 10.659 | 10.644 | 10.472 | 7.919 | 9.182 | 10.618 |
ME000 | 9.428 | 9.663 | 9.524 | 10.130 | 8.842 | 9.795 | 9.380 | 9.319 | 6.540 | 7.896 | 9.301 |
ME001 | 6.165 | 6.602 | 6.428 | 6.705 | 5.285 | 6.381 | 6.521 | 6.206 | 6.166 | 5.980 | 6.468 |
ME002 | 7.383 | 6.583 | 6.934 | 6.423 | 5.832 | 6.563 | 6.487 | 6.535 | 6.055 | 6.154 | 6.514 |
ME003 | 8.887 | 8.534 | 8.658 | 8.283 | 7.979 | 8.819 | 8.588 | 8.444 | 7.293 | 7.829 | 8.611 |
ME004 | 8.534 | 8.331 | 8.551 | 8.911 | 7.346 | 8.601 | 8.386 | 8.717 | 7.213 | 7.762 | 8.241 |
ME005 | 12.486 | 14.145 | 13.886 | 9.450 | 10.215 | 12.963 | 11.536 | 12.775 | 6.600 | 9.984 | 11.732 |
ME006 | 6.609 | 6.785 | 6.684 | 7.007 | 6.223 | 6.675 | 6.779 | 6.757 | 6.387 | 6.331 | 6.478 |
ME007 | 9.732 | 9.643 | 9.805 | 9.372 | 9.022 | 9.975 | 9.705 | 9.629 | 7.436 | 8.74 | 9.878 |
特征点 | ALIKE | SuperPoint | XFeat | D2-Net | DISK | R2D2 | SFD2 |
---|---|---|---|---|---|---|---|
MH000 | 104.336 | 31.485 | 104.114 | 0.395 | 230.685 | 202.505 | 6.030 |
MH001 | 171.056 | 49.141 | 121.606 | 0.392 | 236.237 | 262.874 | 12.700 |
MH002 | 178.670 | 18.793 | 118.860 | 0.425 | 233.026 | 256.604 | 5.109 |
MH003 | 101.301 | 33.025 | 86.855 | 0.337 | 186.509 | 178.325 | 4.344 |
MH004 | 98.713 | 7.307 | 98.488 | 0.376 | 243.231 | 178.595 | 4.478 |
MH005 | 246.712 | 50.350 | 144.445 | 0.390 | 226.917 | 270.599 | 9.568 |
MH006 | 163.939 | 42.238 | 120.138 | 0.373 | 210.018 | 233.142 | 8.151 |
MH007 | 171.425 | 43.656 | 127.893 | 0.393 | 245.529 | 248.681 | 8.436 |
ME000 | 121.683 | 36.422 | 114.715 | 0.501 | 331.300 | 256.842 | 9.606 |
ME001 | 243.317 | 38.217 | 139.288 | 0.393 | 217.231 | 254.585 | 10.482 |
ME002 | 214.653 | 66.151 | 137.479 | 0.449 | 253.256 | 283.337 | 13.906 |
ME003 | 122.109 | 24.904 | 85.554 | 0.340 | 196.310 | 189.215 | 7.827 |
ME004 | 86.689 | 38.143 | 131.865 | 0.478 | 265.158 | 221.082 | 3.672 |
ME005 | 107.440 | 14.886 | 86.840 | 0.384 | 239.132 | 190.755 | 9.145 |
ME006 | 231.071 | 44.124 | 133.078 | 0.377 | 201.123 | 263.733 | 9.126 |
ME007 | 202.551 | 28.271 | 140.878 | 0.436 | 274.537 | 283.592 | 8.675 |