Skip to content

lorenzifrancesco/SolitonDynamics.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SolitonDynamics.jl

A solver for the 3D Gross-Pitaevskii equation (GPE) and quasi-one-dimensional effective equations derived from it. The physical problem is the scattering of a matter-wave soliton from a thin potential barrier. The results are collected in the paper arXiv:2310.02018.

Quasi-one-dimensional scattering

Purpose of the solver

  • Find the soliton-like ground state of all the equations
  • Using the soliton ground state, solve the dynamics of a collision with a narrow barrier
  • Compare the transmission coefficient and the regions of barrier-induced collapse

Featured equations

  • 3D-GPE, with GPU support
$$i \dfrac{\partial}{\partial t}\psi = \left[-\dfrac{1}{2} \nabla^2 + U + g(N-1)|\psi|^2\right]\psi.$$

where $U(x, y, z)$ is the external potential, composed of a tight transverse harmonic part and a axial barrier term $V(x)$.

  • Nonpolynomial Schrodinger equation (NPSE)
$$i \frac{\partial}{\partial t} f = \bigg[- \frac{1}{2} \frac{\partial^2}{\partial x^2} + V +\frac{1}{2\sigma^2} + \frac{1}{2}\sigma^2 + \frac{g(N-1)}{2\pi \sigma^2}|f|^2 \bigg]f,$$ $$\sigma^2 = \sqrt{1+ 2a_s(N-1)|f|^2}.$$
  • NPSE+, i.e. the exact solution to the variational NPSE problem
$$i \frac{\partial}{\partial t} f = \bigg[- \frac{1}{2} \frac{\partial^2}{\partial x^2} + V + \frac{1}{2\sigma^2}\left(1+ \left(\frac{\partial}{\partial x} \sigma\right)^2 \right) +\frac{1}{2}\sigma^2 + \frac{g(N-1)}{2\pi\sigma^2}|f|^2 \bigg] f,$$ $$\sigma^4 - \left[1 + 2a_s{(N-1)}|f|^2\right] +\left[\sigma \frac{\partial^2}{\partial x^2} \sigma -\left(\frac{\partial}{\partial x}\sigma\right)^2 +\sigma \frac{\partial}{\partial x}\sigma \frac{1}{|f|^2}\frac{\partial}{\partial x} |f|^2 \right] = 0.$$
  • 1D-GPE
$$i \dfrac{\partial}{\partial t}f = \left[-\dfrac{1}{2}\dfrac{\partial^2}{\partial x^2} + V + 1 + g_{1D}|f|^2\right]f$$

Numerical methods

  • Split-step Fourier Method (SSFM) with Strang splitting, in one and three spatial dimensions.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published