-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #24 from marhale3/ekm507-patch-1
Update 1111-11-11-066.diophantine-equation.html
- Loading branch information
Showing
1 changed file
with
7 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,21 +1,21 @@ | ||
--- | ||
layout: problem | ||
difficulty: 25 | ||
title: "Diophantine equation" | ||
title: "معادلهٔ دیوفانتین" | ||
problemId: 66 | ||
answer: 661 | ||
--- | ||
|
||
<p>Consider quadratic Diophantine equations of the form:</p> | ||
<p>معادلهٔ دیوفانتین درجهٔ ۲ به فرم زیر را در نظر بگیرید.:</p> | ||
<p style='text-align:center;'><i>x</i><sup>2</sup> – D<i>y</i><sup>2</sup> = 1</p> | ||
<p>For example, when D=13, the minimal solution in <i>x</i> is 649<sup>2</sup> – 13×180<sup>2</sup> = 1.</p> | ||
<p>It can be assumed that there are no solutions in positive integers when D is square.</p> | ||
<p>By finding minimal solutions in <i>x</i> for D = {2, 3, 5, 6, 7}, we obtain the following:</p> | ||
<p>برای مثال , برای D=13, حل کمینهمقدار <i>x</i> برابر است با 649<sup>2</sup> – 13×180<sup>2</sup> = 1.</p> | ||
<p>میتوانیم فرض بگیریم برای D-های مربعکامل هیچ مقداری برای x وجود ندارد.</p> | ||
<p>با یافتن کمینه مقادیر x برای <i>x</i> D = {2, 3, 5, 6, 7}, به عبارتهای زیر میرسیم:</p> | ||
<p style='margin-left:20px;'>3<sup>2</sup> – 2×2<sup>2</sup> = 1<br /> | ||
2<sup>2</sup> – 3×1<sup>2</sup> = 1<br /> | ||
<span style='color:#dd0000;font-weight:bold;'>9</span><sup>2</sup> – 5×4<sup>2</sup> = 1<br /> | ||
5<sup>2</sup> – 6×2<sup>2</sup> = 1<br /> | ||
8<sup>2</sup> – 7×3<sup>2</sup> = 1</p> | ||
<p>Hence, by considering minimal solutions in <i>x</i> for D ≤ 7, the largest <i>x</i> is obtained when D=5.</p> | ||
<p>Find the value of D ≤ 1000 in minimal solutions of <i>x</i> for which the largest value of <i>x</i> is obtained.</p> | ||
<p>اکنون, با توجه به حلهای کمینه برای <i>x</i> D ≤ 7, بزرگترین مقدار <i>x</i> زمانی حاصل شده است که مقدار D=5 باشد.</p> | ||
<p>به ازای D های کمتر از 1000 مقداری از D را بیابید که در آن ≤ 1000 معادلهٔ کمینهٔ <i>x</i> بیشترین مقدار از بین این معادلهها باشد.</p> | ||
|