Skip to content

Commit

Permalink
Updated the evaluation script to use the output from HAIS
Browse files Browse the repository at this point in the history
  • Loading branch information
Meida Chen committed Aug 3, 2022
1 parent 6591749 commit 557e397
Showing 1 changed file with 50 additions and 125 deletions.
175 changes: 50 additions & 125 deletions HAIS/STPLS3DInstanceSegmentationChallenge_Codalab_Evaluate.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import logging
import os,json
import pandas as pd
import numpy as np
from sys import argv

Expand Down Expand Up @@ -76,7 +75,7 @@ def evaluate_matches(matches):
gt_instances = matches[m]['gt'][label_name]
# filter groups in ground truth
gt_instances = [gt for gt in gt_instances if
gt['instance_id'] >= 10000 and gt['vert_count'] >= min_region_size and gt['med_dist'] <= distance_thresh and gt['dist_conf'] >= distance_conf]
gt['instance_id'] >= 1000 and gt['vert_count'] >= min_region_size and gt['med_dist'] <= distance_thresh and gt['dist_conf'] >= distance_conf]
if gt_instances:
has_gt = True
if pred_instances:
Expand Down Expand Up @@ -132,7 +131,7 @@ def evaluate_matches(matches):
num_ignore = pred['void_intersection']
for gt in pred['matched_gt']:
# group?
if gt['instance_id'] < 10000:
if gt['instance_id'] < 1000:
num_ignore += gt['intersection']
# small ground truth instances
if gt['vert_count'] < min_region_size or gt['med_dist'] > distance_thresh or gt['dist_conf'] < distance_conf:
Expand Down Expand Up @@ -244,7 +243,7 @@ def assign_instances_for_scan(scene_name, pred_info, gt_ids):
pred2gt[label] = []
num_pred_instances = 0
# mask of void labels in the groundtruth
bool_void = np.logical_not(np.in1d(gt_ids//10000, VALID_CLASS_IDS))
bool_void = np.logical_not(np.in1d(gt_ids//1000, VALID_CLASS_IDS))
# go thru all prediction masks
nMask = pred_info['label_id'].shape[0]

Expand Down Expand Up @@ -353,10 +352,10 @@ def __init__(self, mesh_vert_instances, instance_id):
self.label_id = int(self.get_label_id(instance_id))
### the number of point labels as instance_id
self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id))
### semantic and instance labels are stored in single number by semantic_label * 10000 + inst_id + 1
### semantic and instance labels are stored in single number by semantic_label * 1000 + inst_id + 1
### label_id means semantic id
def get_label_id(self, instance_id):
return int(instance_id // 10000)
return int(instance_id // 1000)

def get_instance_verts(self, mesh_vert_instances, instance_id):
return (mesh_vert_instances == instance_id).sum()
Expand Down Expand Up @@ -404,71 +403,13 @@ def get_instances(ids, class_ids, class_labels, id2label):
instances[id2label[inst.label_id]].append(inst.to_dict())
return instances


def splitPointCloud(cloud, size=50.0, stride=50.0):
cloud = cloud - cloud.min(0)
limitMax = np.amax(cloud, axis=0)
width = int(np.ceil((limitMax[0] - size) / stride)) + 1
depth = int(np.ceil((limitMax[1] - size) / stride)) + 1
cells = [(x * stride, y * stride) for x in range(width) for y in range(depth)]
indx = []
for (x, y) in cells:
xcond = (cloud[:, 0] <= x + size) & (cloud[:, 0] >= x)
ycond = (cloud[:, 1] <= y + size) & (cloud[:, 1] >= y)
curIndx = xcond & ycond
indx.append(curIndx)
return indx


def prepareGT(inFile,outFile,gt=True):
data = pd.read_csv(inFile, header = None).values
sem_labels = data[:, 6]
instance_labels = data[:, 7]
sem_labels = sem_labels.astype(np.int32)
instance_labels = instance_labels.astype(np.float32)

# map instance from 1.
# -100 for ignored labels, xx00y: x for semantic_label, y for inst_id (1~instance_num)
# use 500000 to be safe, who knows what number was assigned to a instance...
# [1:] because there are -100, -100 is still -100.
if gt:
uniqueInstances = (np.unique(instance_labels))[1:].astype(np.int32)
else:
uniqueInstances = (np.unique(instance_labels)).astype(np.int32)
remapper_instance = np.ones(500000) * (-101)
for i, j in enumerate(uniqueInstances):
remapper_instance[j] = i
instance_labels = remapper_instance[instance_labels.astype(np.int32)]

instance_labels = (instance_labels+1) + (sem_labels*10000)

if gt:
outData = np.concatenate((data[:,:3], np.expand_dims(instance_labels,axis=1)), axis=1)
np.savetxt(outFile, outData, fmt='%f,%f,%f,%d', delimiter=',')
else:
np.savetxt(outFile, instance_labels, fmt='%d')


if __name__ == "__main__":


### prepare gt data and result for debug
# rootRef = r'E:\ECCV_workshop\test\input\ref'
# inFileGT = r'E:\ECCV_workshop\test\26_points_GTv3.txt'
# outFile = os.path.join(rootRef,'26_points_GTv3.solution')
# prepareGT(inFileGT,outFile,gt=True)
#
# rootRes = r'E:\ECCV_workshop\test\input\res'
# outFile = os.path.join(rootRes,'26_points_GTv3.predict')
# inFileRes = r'E:\ECCV_workshop\test\26_points_GTv3_pre.txt'
# prepareGT(inFileRes,outFile,gt=False)


### prepare for evaluation

# Default I/O directories:
default_input_dir = r'E:\ECCV_workshop\test\input'
default_output_dir = r'E:\ECCV_workshop\test\output'
default_input_dir = r'E:\ECCV_workshop\evaluation_test\input'
default_output_dir = r'E:\ECCV_workshop\evaluation_test\output'

#### INPUT/OUTPUT: Get input and output directory names
if len(argv) == 1: # Use the default input and output directories if no arguments are provided
Expand All @@ -481,72 +422,56 @@ def prepareGT(inFile,outFile,gt=True):
os.makedirs(output_dir)

score_file = open(os.path.join(output_dir, 'scores.txt'), 'w')
# html_file = open(os.path.join(output_dir, 'scores.html'), 'w')

import glob
# Get all the solution files from the solution directory
solution_names = sorted(glob.glob(os.path.join(input_dir, 'ref', '*.solution')))
matches = {}
for i, solution_file in enumerate(solution_names):
### gt contains x,y,z,label.
### pre only has label and same order as gt
# Extract the dataset name from the file name
basename = os.path.basename(solution_file).split('.')[0]
data_path = os.path.join(input_dir, 'ref')
results_path = os.path.join(input_dir, 'res')
instance_paths = sorted(glob.glob(os.path.join(results_path, '*.txt')))

matches = {}
for instance_path in instance_paths:
img_id = os.path.basename(instance_path)[:-4]

try:
preFilePath = os.path.join(input_dir, 'res', basename + '.predict')
if not os.path.exists(preFilePath): raise ValueError("Missing prediction file: %s.predict" %(basename))
gtFilePath = solution_file
data = pd.read_csv(gtFilePath, header = None).values
preDataAll = pd.read_csv(preFilePath, header = None).values
if (len(data) != len(preDataAll)): raise ValueError(
"Bad prediction shape. # prediction: {}\n# Solution:{}".format(len(preDataAll), len(data)))

xyz = data[:,:3]
gtDataAll = data[:,3]
gtSem = (gtDataAll // 10000).astype(int)
gtIns = gtDataAll.astype(int)
preDataAll = np.squeeze(preDataAll, axis=1)

indices = splitPointCloud(xyz)
for j,indx in enumerate(indices):
# print ("%d / %d"%(i+1,len(indices)))
gt_ids = gtDataAll[indx]
preData = preDataAll[indx]

preSem = []
preIns = []
preConf = []
uniqueInses = np.unique(preData)
for uniqueIns in uniqueInses:
preSem.append((uniqueIns // 10000).astype(int))
curIns = np.where(preData == uniqueIns, 1, 0)
preIns.append(curIns.astype(int))

# conf value doesn't really matter
preConf = np.full((len(preSem),1),1.0)
preSem = np.array(preSem)
preIns = np.array(preIns)

pred_info = {}
pred_info['conf'] = preConf
pred_info['label_id'] = preSem
pred_info['mask'] = preIns
gt2pred, pred2gt = assign_instances_for_scan(f'{basename}_{j}', pred_info, gt_ids)

matches[f'{basename}_{j}'] = {}
matches[f'{basename}_{j}']['gt'] = gt2pred
matches[f'{basename}_{j}']['pred'] = pred2gt

matches[f'{basename}_{j}']['seg_gt'] = gtSem
matches[f'{basename}_{j}']['seg_pred'] = preSem
gt = os.path.join(data_path, img_id + '.npy')
assert os.path.isfile(gt)
data = np.load(gt)
coords, rgb, semantic_label, instance_label = data[:,:3], data[:,3:6], np.squeeze(data[:,6]), np.squeeze(data[:,7])
gt_ids = semantic_label*1000 + instance_label

pred_infos = open(instance_path, 'r').readlines()
pred_infos = [x.rstrip().split() for x in pred_infos]
mask_path, labels, scores = list(zip(*pred_infos))

preSem = []
preIns = []
preConf = []
for mask_path, label, score in pred_infos:
mask_full_path = os.path.join(results_path, mask_path)
mask = np.array(open(mask_full_path).read().splitlines(), dtype=int)
preIns.append(mask)
preSem.append(label)
preConf.append(score)
preConf = np.array(preConf, dtype=float)
preSem = np.array(preSem, dtype=int)
preIns = np.array(preIns)

pred_info = {}
pred_info['conf'] = preConf
pred_info['label_id'] = preSem
pred_info['mask'] = preIns

gt2pred, pred2gt = assign_instances_for_scan(str(img_id), pred_info, gt_ids)

matches[str(img_id)] = {}
matches[str(img_id)]['gt'] = gt2pred
matches[str(img_id)]['pred'] = pred2gt

matches[str(img_id)]['seg_gt'] = semantic_label
matches[str(img_id)]['seg_pred'] = preSem

except Exception as inst:
print("======= ERROR evaluating for" + basename.capitalize() + " =======")
# html_file.write(
# "======= Set %d" % set_num + " (" + basename.capitalize() + "): score(" + score_name + ")=ERROR =======\n")
# print(inst)
print("======= ERROR evaluating for" + img_id.capitalize() + " =======")

ap_scores = evaluate_matches(matches)
avgs = compute_averages(ap_scores)
Expand Down

0 comments on commit 557e397

Please # to comment.