-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add unit tests for
multiply_distributions()
- Loading branch information
1 parent
39acd16
commit 943fc3c
Showing
1 changed file
with
60 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import numpy as np | ||
import scipy.stats | ||
|
||
import sdr | ||
|
||
|
||
def test_normal_normal(): | ||
X = scipy.stats.norm(loc=3, scale=0.5) | ||
Y = scipy.stats.norm(loc=5, scale=1.5) | ||
_verify(X, Y) | ||
|
||
|
||
def test_rayleigh_rayleigh(): | ||
X = scipy.stats.rayleigh(scale=1) | ||
Y = scipy.stats.rayleigh(loc=1, scale=2) | ||
_verify(X, Y) | ||
|
||
|
||
def test_rician_rician(): | ||
X = scipy.stats.rice(2) | ||
Y = scipy.stats.rice(3) | ||
_verify(X, Y) | ||
|
||
|
||
def test_normal_rayleigh(): | ||
X = scipy.stats.norm(loc=-1, scale=0.5) | ||
Y = scipy.stats.rayleigh(loc=2, scale=1.5) | ||
_verify(X, Y) | ||
|
||
|
||
def test_rayleigh_rician(): | ||
X = scipy.stats.rayleigh(scale=1) | ||
Y = scipy.stats.rice(3) | ||
_verify(X, Y) | ||
|
||
|
||
def _verify(X, Y): | ||
# Empirically compute the distribution | ||
z = X.rvs(250_000) * Y.rvs(250_000) | ||
hist, bins = np.histogram(z, bins=51, density=True) | ||
x = bins[1:] - np.diff(bins) / 2 | ||
|
||
# Numerically compute the distribution, only do so over the histogram bins (for speed) | ||
Z = sdr.multiply_distributions(X, Y, x) | ||
|
||
if False: | ||
import matplotlib.pyplot as plt | ||
|
||
plt.figure() | ||
plt.plot(x, X.pdf(x), label="X") | ||
plt.plot(x, Y.pdf(x), label="Y") | ||
plt.plot(x, Z.pdf(x), label="X * Y") | ||
plt.hist(z, bins=51, cumulative=False, density=True, histtype="step", label="X * Y empirical") | ||
plt.legend() | ||
plt.xlabel("Random variable") | ||
plt.ylabel("Probability density") | ||
plt.title("Product of two distributions") | ||
plt.show() | ||
|
||
assert np.allclose(Z.pdf(x), hist, atol=np.max(hist) * 0.1) |