Skip to content

michaellavelle/ml4j-neuralnets-demo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ml4j-neuralnets-demo

Creating a supervised NeuralNetwork


 // Create a simple 2-layer SupervisedFeedForwardNeuralNetwork
    
    // First, construct a MatrixFactory implementation.
    MatrixFactory matrixFactory = new JBlasMatrixFactory();
    
    // First Layer, takes a 28 * 28 grey-scale image as input (plus bias) - with every input Neuron connected to all 100 hidden Neurons 
    // This Layer applies a sigmoid non-linearity and does not use batch-norm

    FeedForwardLayer<?, ?> firstLayer = new FullyConnectedFeedForwardLayerImpl(
        new Neurons3D(28, 28 ,1, true), new Neurons(100, false), 
        new SigmoidActivationFunction(), matrixFactory, false);
    
    // Second Layer, takes the activations of the 100 hidden Neurons as input and produces activations of the 10 softmax output Neurons.

    FeedForwardLayer<?, ?> secondLayer = 
        new FullyConnectedFeedForwardLayerImpl(new Neurons(100, true), 
        new Neurons(10, false), new SoftmaxActivationFunction(), matrixFactory, false);

    // Neural Network
    SupervisedFeedForwardNeuralNetwork neuralNetwork 
          =  new SupervisedFeedForwardNeuralNetworkImpl(firstLayer, secondLayer);

Training the NeuralNetwork


    double[][] trainingData = ... ; // Our training data - one row per training example.
    double[][] trainingLabels = ... ; // Our training label activations - one row per training example.
    
    // Create NeuronsActivation instances for the inputs and desired outputs.
    NeuronsActivation trainingDataActivations = new NeuronsActivation(matrixFactory.createMatrix(trainingData), NeuronsActivationFeatureOrientation.COLUMNS_SPAN_FEATURE_SET); 

    NeuronsActivation desiredOutputActivations = new NeuronsActivation(matrixFactory.createMatrix(trainingLabels), NeuronsActivationFeatureOrientation.COLUMNS_SPAN_FEATURE_SET); 
    
    // Create a context to train the network from Layer 0 to the final Layer.
    FeedForwardNeuralNetworkContext context = 
        new FeedForwardNeuralNetworkContextImpl(matrixFactory, 0, null);
    
    // Configure the context to train in mini-batches of 32 and to run for 100 Epochs
    // and specify the learning rate
    context.setTrainingMiniBatchSize(32);
    context.setTrainingEpochs(100);
    context.setTrainingLearningRate(0.05);

    // Train the NeuralNetwork
    neuralNetwork.train(trainingDataActivations, desiredOutputActivations, context);

Using the NeuralNetwork


    // Use the NeuralNetwork, to obtain output activations for test set data activations.
    
    double[][] testSetData = ...  ; // Our test set data - one row per training example.

    // Create NeuronsActivation instance from this test set data.
    NeuronsActivation testSetDataActivations = new NeuronsActivation(matrixFactory.createMatrix(trainingData), NeuronsActivationFeatureOrientation.COLUMNS_SPAN_FEATURE_SET); 
    
    // Obtain the output NeuronsActivation by forward propagating the input activations through the Network
    NeuronsActivation outputActivations = 
          neuralNetwork.forwardPropagate(testSetDataActivations, context).getOutputs();
    
    // Use the output activations (eg. to classify, by taking the argmax of each row)

About

Simple demos of ml4j NeuralNets...coming soon

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%