Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Add AdaRNN baseline. #689

Merged
merged 9 commits into from
Nov 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
Recent released features
| Feature | Status |
| -- | ------ |
| ADARNN model | [Released](https://github.com/microsoft/qlib/pull/689) on Nov 14, 2021 |
| TCN model | [Released](https://github.com/microsoft/qlib/pull/668) on Nov 4, 2021 |
|Temporal Routing Adaptor (TRA) | [Released](https://github.com/microsoft/qlib/pull/531) on July 30, 2021 |
| Transformer & Localformer | [Released](https://github.com/microsoft/qlib/pull/508) on July 22, 2021 |
Expand Down Expand Up @@ -296,6 +297,7 @@ Here is a list of models built on `Qlib`.
- [Localformer based on pytorch (Juyong Jiang, et al.)](examples/benchmarks/Localformer/)
- [TRA based on pytorch (Hengxu, Dong, et al. KDD 2021)](examples/benchmarks/TRA/)
- [TCN based on pytorch (Shaojie Bai, et al. 2018)](examples/benchmarks/TCN/)
- [ADARNN based on pytorch (YunTao Du, et al. 2021)](examples/benchmarks/ADARNN/)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add a simple readme for ADARNN here


Your PR of new Quant models is highly welcomed.

Expand Down
4 changes: 4 additions & 0 deletions examples/benchmarks/ADARNN/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# AdaRNN
* Code: [https://github.com/jindongwang/transferlearning/tree/master/code/deep/adarnn](https://github.com/jindongwang/transferlearning/tree/master/code/deep/adarnn)
* Paper: [AdaRNN: Adaptive Learning and Forecasting for Time Series](https://arxiv.org/pdf/2108.04443.pdf).

4 changes: 4 additions & 0 deletions examples/benchmarks/ADARNN/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
pandas==1.1.2
numpy==1.17.4
scikit_learn==0.23.2
torch==1.7.0
88 changes: 88 additions & 0 deletions examples/benchmarks/ADARNN/workflow_config_adarnn_Alpha360.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
model: <MODEL>
dataset: <DATASET>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: ADARNN
module_path: qlib.contrib.model.pytorch_adarnn
kwargs:
d_feat: 6
hidden_size: 64
num_layers: 2
dropout: 0.0
n_epochs: 200
lr: 1e-3
early_stop: 20
batch_size: 800
metric: loss
loss: mse
GPU: 0
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
6 changes: 3 additions & 3 deletions examples/benchmarks/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ The numbers shown below demonstrate the performance of the entire `workflow` of

| Model Name | Dataset | IC | ICIR | Rank IC | Rank ICIR | Annualized Return | Information Ratio | Max Drawdown |
|------------------------------------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------------|-------------------|--------------|
| TCN(Shaojie Bai, et al.) | Alpha158 | 0.0275±0.00 | 0.2157±0.01 | 0.0411±0.00 | 0.3379±0.01 | 0.0190±0.02 | 0.2887±0.27 | -0.1202±0.03 |
| TabNet(Sercan O. Arik, et al.) | Alpha158 | 0.0204±0.01 | 0.1554±0.07 | 0.0333±0.00 | 0.2552±0.05 | 0.0227±0.04 | 0.3676±0.54 | -0.1089±0.08 |
| Transformer(Ashish Vaswani, et al.) | Alpha158 | 0.0264±0.00 | 0.2053±0.02 | 0.0407±0.00 | 0.3273±0.02 | 0.0273±0.02 | 0.3970±0.26 | -0.1101±0.02 |
| GRU(Kyunghyun Cho, et al.) | Alpha158(with selected 20 features) | 0.0315±0.00 | 0.2450±0.04 | 0.0428±0.00 | 0.3440±0.03 | 0.0344±0.02 | 0.5160±0.25 | -0.1017±0.02 |
Expand All @@ -38,8 +39,6 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
| MLP | Alpha158 | 0.0376±0.00 | 0.2846±0.02 | 0.0429±0.00 | 0.3220±0.01 | 0.0895±0.02 | 1.1408±0.23 | -0.1103±0.02 |
| LightGBM(Guolin Ke, et al.) | Alpha158 | 0.0448±0.00 | 0.3660±0.00 | 0.0469±0.00 | 0.3877±0.00 | 0.0901±0.00 | 1.0164±0.00 | -0.1038±0.00 |
| DoubleEnsemble(Chuheng Zhang, et al.) | Alpha158 | 0.0544±0.00 | 0.4340±0.00 | 0.0523±0.00 | 0.4284±0.01 | 0.1168±0.01 | 1.3384±0.12 | -0.1036±0.01 |
| TCN | Alpha158 | 0.0275±0.00 | 0.2157±0.01 | 0.0411±0.00 | 0.3379±0.01 | 0.0190±0.02 | 0.2887±0.27 | -0.1202±0.03 |



## Alpha360 dataset
Expand All @@ -54,13 +53,14 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
| XGBoost(Tianqi Chen, et al.) | Alpha360 | 0.0394±0.00 | 0.2909±0.00 | 0.0448±0.00 | 0.3679±0.00 | 0.0344±0.00 | 0.4527±0.02 | -0.1004±0.00 |
| DoubleEnsemble(Chuheng Zhang, et al.) | Alpha360 | 0.0404±0.00 | 0.3023±0.00 | 0.0495±0.00 | 0.3898±0.00 | 0.0468±0.01 | 0.6302±0.20 | -0.0860±0.01 |
| LightGBM(Guolin Ke, et al.) | Alpha360 | 0.0400±0.00 | 0.3037±0.00 | 0.0499±0.00 | 0.4042±0.00 | 0.0558±0.00 | 0.7632±0.00 | -0.0659±0.00 |
| TCN(Shaojie Bai, et al.) | Alpha360 | 0.0441±0.00 | 0.3301±0.02 | 0.0519±0.00 | 0.4130±0.01 | 0.0604±0.02 | 0.8295±0.34 | -0.1018±0.03 |
| ALSTM (Yao Qin, et al.) | Alpha360 | 0.0497±0.00 | 0.3829±0.04 | 0.0599±0.00 | 0.4736±0.03 | 0.0626±0.02 | 0.8651±0.31 | -0.0994±0.03 |
| LSTM(Sepp Hochreiter, et al.) | Alpha360 | 0.0448±0.00 | 0.3474±0.04 | 0.0549±0.00 | 0.4366±0.03 | 0.0647±0.03 | 0.8963±0.39 | -0.0875±0.02 |
| GRU(Kyunghyun Cho, et al.) | Alpha360 | 0.0493±0.00 | 0.3772±0.04 | 0.0584±0.00 | 0.4638±0.03 | 0.0720±0.02 | 0.9730±0.33 | -0.0821±0.02 |
| AdaRNN(Yuntao Du, et al.) | Alpha360 | 0.0464±0.01 | 0.3619±0.08 | 0.0539±0.01 | 0.4287±0.06 | 0.0753±0.03 | 1.0200±0.40 | -0.0936±0.03 |
| GATs (Petar Velickovic, et al.) | Alpha360 | 0.0476±0.00 | 0.3508±0.02 | 0.0598±0.00 | 0.4604±0.01 | 0.0824±0.02 | 1.1079±0.26 | -0.0894±0.03 |
| TCTS(Xueqing Wu, et al.) | Alpha360 | 0.0508±0.00 | 0.3931±0.04 | 0.0599±0.00 | 0.4756±0.03 | 0.0893±0.03 | 1.2256±0.36 | -0.0857±0.02 |
| TRA(Hengxu Lin, et al.) | Alpha360 | 0.0485±0.00 | 0.3787±0.03 | 0.0587±0.00 | 0.4756±0.03 | 0.0920±0.03 | 1.2789±0.42 | -0.0834±0.02 |
| TCN(Shaojie Bai, et al.) | Alpha360 | 0.0441±0.00 | 0.3301±0.02 | 0.0519±0.00 | 0.4130±0.01 | 0.0604±0.02 | 0.8295±0.34 | -0.1018±0.03 |

- The selected 20 features are based on the feature importance of a lightgbm-based model.
- The base model of DoubleEnsemble is LGBM.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -95,4 +95,4 @@ task:
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
config: *port_analysis_config
Loading