Skip to content

针对移动端的人脸识别需求,训练测试一些相关的小模型实验。

Notifications You must be signed in to change notification settings

moli232777144/small_model_face_recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

small_model_face_recognition

针对移动端的人脸识别需求,训练测试一些的小模型相关实验。

目录

  1. 前言
  2. 环境安装
  3. 数据预处理
  4. 模型训练
  5. 模型测试
  6. 评测结果
  7. 相关参考

前言

当前效果良好的人脸识别相关模型整体大小基本偏大,占用内存大,计算费时,并不太适合嵌入式移动端的应用,本项目主要基于改进lightcnn模型,训练适用于移动端的人脸识别小模型;

环境安装

  1. 下载相关代码,并更新子模块;

git clone https://github.com/moli232777144/small_model_face_recognition.git

git submodule update --init

  1. 安装happynear的caffe-windows,编译GPU版本,并配置matlab环境;

数据预处理

note: 切换preprocess目录下

  1. 下载 CAISA-WebFace和LFW数据库,放至data目录;

  2. 运行code/face_detect_demo.m,提取人脸相关信息,result下将会生成dataList.mat文件;

  3. 运行code/face_align_demo.m,data目录下将会生成CASIA-WebFace-wx-128X128和lfw-wx-128X128的对齐图像;

模型训练

note: 切换train目录下

  1. 复制数据预处理的CASIA-WebFace-wx-128X128目录到data目录下;

  2. 运行code/get_list.m,获取CASIA-WebFace-wx-128X128.txt;

  3. 运行code/lightcnn_small_train.bat;

  4. 降低学习率等,调参;

模型测试

note: 切换test目录下

  1. 复制数据预处理的lfw-wx-128X128目录到data目录下;

  2. 下载LFW(view 2)的测试pairs.txt至data目录下;

  3. 运行code/evaluation.m,获取识别率;

评测结果

  1. 初调loss可降低至2.6左右,LFW识别率98.33%;

  2. 安卓端搭ncnn框架评测,实时速度可达30ms以下,具体数据如下;

M6Note:/data/local/tmp/bin $ ./benchncnn 8 8 0
loop_count = 8
num_threads = 8
powersave = 0
      small_face  min =   22.55  max =   24.80  avg =   23.66
  LightenedCNN_A  min =  218.03  max =  259.79  avg =  227.34
  LightenedCNN_B  min =   77.43  max =   83.81  avg =   79.04
      squeezenet  min =   44.52  max =   69.33  avg =   49.68
       mobilenet  min =   74.12  max =  109.70  avg =   79.87
    mobilenet_v2  min =   86.45  max =  111.27  avg =   91.01
      shufflenet  min =   28.59  max =   30.10  avg =   28.93
       googlenet  min =  139.83  max =  184.98  avg =  154.34
        resnet18  min =  183.14  max =  203.49  avg =  190.05
         alexnet  min =  195.94  max =  219.97  avg =  205.58

相关参考

lightcnn

sphereface

NormFace

About

针对移动端的人脸识别需求,训练测试一些相关的小模型实验。

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published