SuperPoint-based Lagrangian Ice MOtion algorithm
Create environment
mamba env create -f environment.yml
mamba activate superlimo
Install SuperLIMo
pip install superlimo
Alternatively, Docker can be used:
docker build -t superlimo:latest .
- Edit your config file (see examples/example_config.yml)
- Download Sentinel-1 SAFE files
- Run superlimo
derive-drift confilg_file.yml S1_FILE_NAME_0.SAFE S1_FILE_NAME_1.SAFE output_dir/output_file.npz
- Read initial (
x0
,y0
) and final (x1
,y1
) coordinates of the derived drift vectors from the output file. The quality of the vector (maximum cross-correlation) is in themcc
variable. - Docker can be used for running the ice drift retrieval script:
docker run --rm -v /path/on/host:/data superlimo derive-drift /data/confilg_file.yml /data/S1_FILE_NAME_0.SAFE /data/S1_FILE_NAME_1.SAFE /data/output_file.npz
Please cite:
-
Anton Korosov and Sean Chua, "Deep learning algorithm for sea ice drift retrieval from SAR imagery", 12th INTERNATIONAL WORKSHOP ON SEA ICE MODELLING, ASSIMILATION, OBSERVATIONS, PREDICTIONS AND VERIFICATION, 5 - 7 November 2024 | ESA,ESRIN | Frascati, Italy
-
Anton Korosov and Sean Chua, "SuperPoint-based Lagrangian Ice MOtion algorithm, superlimo-0.1.1", Zenodo, Dec. 18, 2024. doi: 10.5281/zenodo.14514307.
@conference{Korosov_etal_2024a,
author = "Korosov, Anton and Chua, Sean",
title = "Deep learning algorithm for sea ice drift retrieval from SAR imagery",
booktitle = "12th INTERNATIONAL WORKSHOP ON SEA ICE MODELLING, ASSIMILATION, OBSERVATIONS, PREDICTIONS AND VERIFICATION",
year = "2024",
month = "11",
publisher = "ESA",
url = "https://www.dropbox.com/scl/fi/gdfg2fet81pgs2o0cnauj/5.-Korosov.pdf?rlkey=ydcgkorfhsxi8pcnfv2qplbv2&e=1&dl=0"
}
@software{Korosov_etal_2024b,
author = {Korosov, Anton and Chua, Sean},
title = {SuperPoint-based Lagrangian Ice MOtion algorithm, superlimo-0.1.1},
month = dec,
year = 2024,
publisher = {Zenodo},
version = {0.1.1},
doi = {10.5281/zenodo.14514307},
url = {https://doi.org/10.5281/zenodo.14514307},
}