Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
[Bugfix][Doc] Fix Doc Formatting (vllm-project#6048)
Browse files Browse the repository at this point in the history
  • Loading branch information
ywang96 authored and robertgshaw2-redhat committed Jul 1, 2024
1 parent fa05042 commit 484a2e3
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions docs/source/serving/faq.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Frequently Asked Questions
========================
===========================

Q: How can I serve multiple models on a single port using the OpenAI API?

Expand All @@ -9,4 +9,4 @@ A: Assuming that you're referring to using OpenAI compatible server to serve mul

Q: Which model to use for offline inference embedding?

A: If you want to use an embedding model, try: https://huggingface.co/intfloat/e5-mistral-7b-instruct. Instead models, such as Llama-3-8b, Mistral-7B-Instruct-v0.3, are generation models rather than an embedding model
A: If you want to use an embedding model, try: https://huggingface.co/intfloat/e5-mistral-7b-instruct. Instead models, such as Llama-3-8b, Mistral-7B-Instruct-v0.3, are generation models rather than an embedding model

1 comment on commit 484a2e3

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

smaller_is_better

Benchmark suite Current: 484a2e3 Previous: 569c905 Ratio
{"name": "mean_ttft_ms", "description": "VLLM Serving - Dense\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\nmax-model-len - 4096\nsparsity - None\nbenchmark_serving {\n \"nr-qps-pair_\": \"300,1\",\n \"dataset\": \"sharegpt\"\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 182.08544932667186 ms 183.7486813564707 ms 0.99
{"name": "mean_tpot_ms", "description": "VLLM Serving - Dense\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\nmax-model-len - 4096\nsparsity - None\nbenchmark_serving {\n \"nr-qps-pair_\": \"300,1\",\n \"dataset\": \"sharegpt\"\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 85.08025667227166 ms 83.87263279896116 ms 1.01
{"name": "mean_ttft_ms", "description": "VLLM Serving - Dense\nmodel - facebook/opt-350m\nmax-model-len - 2048\nsparsity - None\nbenchmark_serving {\n \"nr-qps-pair_\": \"300,1\",\n \"dataset\": \"sharegpt\"\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 24.261541413346396 ms 24.654848356343184 ms 0.98
{"name": "mean_tpot_ms", "description": "VLLM Serving - Dense\nmodel - facebook/opt-350m\nmax-model-len - 2048\nsparsity - None\nbenchmark_serving {\n \"nr-qps-pair_\": \"300,1\",\n \"dataset\": \"sharegpt\"\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 6.031018686174551 ms 6.001352674302764 ms 1.00

This comment was automatically generated by workflow using github-action-benchmark.

Please # to comment.