Skip to content

Pipeline for COpasi PArallel paRAmeter ESTimation (COPARAEST) on Linux computer cluster

Notifications You must be signed in to change notification settings

niko-rodrigue/coparaest

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Prerequisites

  1. LSF or SGE cluster
  2. COPASI, perl and Bash installed on the cluster.
  3. R itself and gplots and ggplot2 packages installed in it.

Workflow:

  1. Prepare your COPASI model file (see example in the model folder):
  • Setup Parameter Estimation task with the default Report
  • The Parameter Estimation Report file must be named param-est-report.txt
  1. Copy your .cps file in the model directory (don't forget to remove all example files from it) together with experimental data file

  2. From root directory run:

sh coparaest.sh n c

where n is number of parameter estimations and c is your cluster queuing system (sge or lsf). This will start n parameter-estimation jobs, one get-obj-values job and one analyse-results job.

Output

(after analyse-results job is finished):

  1. out, err - these folders contain cluster output files with its output and possible errors

  2. results/obj-values.txt - this file contains indecies of parameter estimations (first column) sorted by their objective values (second column) with the best estimation in the first row.

  3. results/ind/estd-params.txt - this file contains all estimated parameters for parameter estimation with ind index.

  4. results/model-correlations.pdf - heatmap of correlations between models in the top 10 estimated parameter sets

  5. results/param-correlations.pdf - heatmap of correlations between parameters in the top 10 estimated parameter sets

  6. results/param-correlations.pdf - variance of parameters in the top 10 estimated parameter sets

Authors: Vladimir Kiselev, Marija Jankovic

Acknowledgments: Martina Fröhlich

About

Pipeline for COpasi PArallel paRAmeter ESTimation (COPARAEST) on Linux computer cluster

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Component Pascal 96.7%
  • Shell 1.2%
  • Perl 1.1%
  • R 1.0%