Skip to content

Commit

Permalink
fix dataset_prepare
Browse files Browse the repository at this point in the history
  • Loading branch information
sunjiahao1999 committed May 11, 2023
1 parent 2cc554e commit 8a7f4f0
Show file tree
Hide file tree
Showing 2 changed files with 34 additions and 0 deletions.
22 changes: 22 additions & 0 deletions docs/en/user_guides/dataset_prepare.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,14 @@ mmdetection3d
│ │ ├── sunrgbd_data.py
│ │ ├── sunrgbd_utils.py
│ │ ├── README.md
│ ├── semantickitti
│ │ ├── sequences
│ │ │ ├── 00
│ │ │ │   ├── labels
│ │ │ │   ├── velodyne
│ │ │ ├── 01
│ │ │ ├── ..
│ │ │ ├── 22
```

Expand Down Expand Up @@ -177,6 +185,20 @@ python tools/dataset_converters/lyft_data_fixer.py --version v1.01 --root-folder
Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above. Also note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the [discussion](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000) for more details.
### SemanticKITTI
Download SemanticKITTI dataset [HERE](http://semantic-kitti.org/dataset.html#download) and unzip all zip files.
Then generate info files by running:
```bash
python ./tools/create_data.py semantickitti --root-path ./data/semantickitti --out-dir ./data/semantickitti --extra-tag semantickitti
```
**Tips**:
- **Ready-made Annotations**. We have also provided SemanticKITTI data annotation files generated offline [here](#summary-of-annotation-files). You could download them and place them under `data/semantickitti/`.
### S3DIS, ScanNet and SUN RGB-D
To prepare S3DIS data, please see its [README](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/data/s3dis/README.md).
Expand Down
12 changes: 12 additions & 0 deletions docs/zh_cn/user_guides/dataset_prepare.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,18 @@ python tools/data_converter/lyft_data_fixer.py --version v1.01 --root-folder ./d

注意,为了文件结构的清晰性,我们遵从了 Lyft 数据原先的文件夹名称。请按照上面展示出的文件结构对原始文件夹进行重命名。同样值得注意的是,第二行命令的目的是为了修复一个损坏的激光雷达数据文件。更多细节请参考[该讨论](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000)。

### SemanticKITTI

在[这里](http://semantic-kitti.org/dataset.html#download)下载 SemanticKITTI 数据集并解压所有文件。通过运行以下指令对 SemanticKITTI 数据进行预处理:

```bash
python ./tools/create_data.py semantickitti --root-path ./data/semantickitti --out-dir ./data/semantickitti --extra-tag semantickitti
```

**小贴士**

- **现成的标注文件**. 我们已经提供了离线处理好的 [SemanticKITTI 标注文件](#数据集标注文件列表)。您直接下载他们并放到 `data/semantickitti` 目录下。

### S3DIS、ScanNet 和 SUN RGB-D

请参考 S3DIS [README](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/data/s3dis/README.md) 文件以对其进行数据预处理。
Expand Down

0 comments on commit 8a7f4f0

Please # to comment.