-
Notifications
You must be signed in to change notification settings - Fork 232
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #202 from LeoXing1996/ddpm_demo
[Feature] Support denoising demo
- Loading branch information
Showing
4 changed files
with
277 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import argparse | ||
import os | ||
import os.path as osp | ||
import sys | ||
|
||
import mmcv | ||
import numpy as np | ||
import torch | ||
from mmcv import DictAction | ||
from torchvision import utils | ||
|
||
# yapf: disable | ||
sys.path.append(os.path.abspath(os.path.join(__file__, '../..'))) # isort:skip # noqa | ||
|
||
from mmgen.apis import init_model, sample_ddpm_model # isort:skip # noqa | ||
# yapf: enable | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='DDPM demo') | ||
parser.add_argument('config', help='test config file path') | ||
parser.add_argument('checkpoint', help='checkpoint file') | ||
parser.add_argument( | ||
'--save-path', | ||
type=str, | ||
default='./work_dirs/demos/ddpm_samples.png', | ||
help='path to save uncoditional samples') | ||
parser.add_argument( | ||
'--device', type=str, default='cuda:0', help='CUDA device id') | ||
|
||
# args for inference/sampling | ||
parser.add_argument( | ||
'--num-batches', type=int, default=4, help='Batch size in inference') | ||
parser.add_argument( | ||
'--num-samples', | ||
type=int, | ||
default=12, | ||
help='The total number of samples') | ||
parser.add_argument( | ||
'--sample-model', | ||
type=str, | ||
default='ema', | ||
help='Which model to use for sampling') | ||
parser.add_argument( | ||
'--sample-cfg', | ||
nargs='+', | ||
action=DictAction, | ||
help='Other customized kwargs for sampling function') | ||
parser.add_argument( | ||
'--same-noise', | ||
action='store_true', | ||
help='whether use same noise as input (x_T)') | ||
parser.add_argument( | ||
'--n-skip', | ||
type=int, | ||
default=25, | ||
help=('Skip how many steps before selecting one to visualize. This is ' | ||
'helpful with denoising timestep is too much. Only work with ' | ||
'`save-path` is end with \'.gif\'.')) | ||
|
||
# args for image grid | ||
parser.add_argument( | ||
'--padding', type=int, default=0, help='Padding in the image grid.') | ||
parser.add_argument( | ||
'--nrow', | ||
type=int, | ||
default=2, | ||
help=('Number of images displayed in each row of the grid. ' | ||
'This argument would work only when label is not given.')) | ||
|
||
# args for image channel order | ||
parser.add_argument( | ||
'--is-rgb', | ||
action='store_true', | ||
help=('If true, color channels will not be permuted, This option is ' | ||
'useful when inference model trained with rgb images.')) | ||
|
||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def create_gif(results, gif_name, fps=60, n_skip=1): | ||
"""Create gif through imageio. | ||
Args: | ||
frames (torch.Tensor): Image frames, shape like [bz, 3, H, W]. | ||
gif_name (str): Saved gif name. | ||
fps (int, optional): Frames per second of the generated gif. | ||
Defaults to 60. | ||
n_skip (int, optional): Skip how many steps before selecting one to | ||
visualize. Defaults to 1. | ||
""" | ||
try: | ||
import imageio | ||
except ImportError: | ||
raise RuntimeError('imageio is not installed,' | ||
'Please use “pip install imageio” to install') | ||
frames_list = [] | ||
for frame in results[::n_skip]: | ||
frames_list.append( | ||
(frame.permute(1, 2, 0).cpu().numpy() * 255.).astype(np.uint8)) | ||
|
||
# ensure the final denoising results in frames_list | ||
if not (len(results) % n_skip == 0): | ||
frames_list.append((results[-1].permute(1, 2, 0).cpu().numpy() * | ||
255.).astype(np.uint8)) | ||
|
||
imageio.mimsave(gif_name, frames_list, 'GIF', fps=fps) | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
model = init_model( | ||
args.config, checkpoint=args.checkpoint, device=args.device) | ||
|
||
if args.sample_cfg is None: | ||
args.sample_cfg = dict() | ||
|
||
suffix = osp.splitext(args.save_path)[-1] | ||
if suffix == '.gif': | ||
args.sample_cfg['save_intermedia'] = True | ||
|
||
results = sample_ddpm_model(model, args.num_samples, args.num_batches, | ||
args.sample_model, args.same_noise, | ||
**args.sample_cfg) | ||
|
||
# save images | ||
mmcv.mkdir_or_exist(os.path.dirname(args.save_path)) | ||
if suffix == '.gif': | ||
# concentrate all output of each timestep | ||
results_timestep_list = [] | ||
for t in results.keys(): | ||
# make grid | ||
results_timestep = utils.make_grid( | ||
results[t], nrow=args.nrow, padding=args.padding) | ||
# unsqueeze at 0, because make grid output is size like [H', W', 3] | ||
results_timestep_list.append(results_timestep[None, ...]) | ||
|
||
# Concatenates to [n_timesteps, H', W', 3] | ||
results_timestep = torch.cat(results_timestep_list, dim=0) | ||
if not args.is_rgb: | ||
results_timestep = results_timestep[:, [2, 1, 0]] | ||
results_timestep = (results_timestep + 1.) / 2. | ||
create_gif(results_timestep, args.save_path, n_skip=args.n_skip) | ||
else: | ||
if not args.is_rgb: | ||
results = results[:, [2, 1, 0]] | ||
|
||
results = (results + 1.) / 2. | ||
utils.save_image( | ||
results, args.save_path, nrow=args.nrow, padding=args.padding) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,11 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from .inference import (init_model, sample_conditional_model, | ||
sample_img2img_model, sample_uncoditional_model) | ||
sample_ddpm_model, sample_img2img_model, | ||
sample_uncoditional_model) | ||
from .train import set_random_seed, train_model | ||
|
||
__all__ = [ | ||
'set_random_seed', 'train_model', 'init_model', 'sample_img2img_model', | ||
'sample_uncoditional_model', 'sample_conditional_model' | ||
'sample_uncoditional_model', 'sample_conditional_model', | ||
'sample_ddpm_model' | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters