Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Fix dcff related issue [464] & [469],add url for model & log #473

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 14 additions & 18 deletions configs/pruning/mmcls/dcff/README.md
Original file line number Diff line number Diff line change
@@ -10,27 +10,27 @@ The mainstream approach for filter pruning is usually either to force a hard-cod

### 1. Classification

| Dataset | Backbone | Params(M) | FLOPs(M) | lr_type | Top-1 (%) | Top-5 (%) | CPrate | Config | Download |
| :------: | :----------: | :-------: | :------: | :-----: | :-------: | :-------: | :---------------------------------------------: | :--------------------------------------------------: | :--------------------------: |
| ImageNet | DCFFResNet50 | 15.16 | 2260 | step | 73.96 | 91.66 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmcls/dcff/dcff_resnet_8xb32_in1k.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Backbone | Params(M) | FLOPs(M) | lr_type | Top-1 (%) | Top-5 (%) | CPrate | Config | Download |
| :------: | :----------: | :-------: | :------: | :-----: | :-------: | :-------: | :---------------------------------------------: | :--------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ImageNet | DCFFResNet50 | 13.32 | 2255 | step | 74.46 | 91.99 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmcls/dcff/dcff_resnet_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmcls/dcff_cls_fix_subnet_weight.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmcls/dcff_mmcls_sup_20220906_131949.log) |

### 2. Detection

| Dataset | Method | Backbone | Style | Lr schd | Params(M) | FLOPs(M) | bbox AP | CPrate | Config | Download |
| :-----: | :---------: | :----------: | :-----: | :-----: | :-------: | :------: | :-----: | :---------------------------------------------: | :---------------------------------------------------------------: | :--------------------------: |
| COCO | Faster_RCNN | DCFFResNet50 | pytorch | step | 33.31 | 168320 | 35.8 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmdet/dcff/dcff_faster_rcnn_resnet50_8xb4_coco.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | Style | Lr schd | Params(M) | FLOPs(M) | bbox AP | CPrate | Config | Download |
| :-----: | :---------: | :----------: | :-----: | :-----: | :-------: | :------: | :-----: | :---------------------------------------------: | :---------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| COCO | Faster_RCNN | DCFFResNet50 | pytorch | step | 33.31 | 168320 | 35.8 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmdet/dcff/dcff_faster_rcnn_resnet50_8xb4_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmdet/dcff_mmdet.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmdet/dcff_mmdet_sup_20220909_103653.log) |

### 3. Segmentation

| Dataset | Method | Backbone | crop size | Lr schd | Params(M) | FLOPs(M) | mIoU | CPrate | Config | Download |
| :--------: | :-------: | :-------------: | :-------: | :-----: | :-------: | :------: | :---: | :-----------------------------------------------------------------: | :-------------------------------------------------------------------: | :--------------------------: |
| Cityscapes | PointRend | DCFFResNetV1c50 | 512x1024 | 160k | 18.43 | 74410 | 76.75 | \[0.0, 0.0, 0.0\] + \[0.35, 0.4, 0.1\] * 10 + \[0.3, 0.3, 0.1\] * 6 | [config](../../mmseg/dcff/dcff_pointrend_resnet50_8xb2_cityscapes.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | crop size | Lr schd | Params(M) | FLOPs(M) | mIoU | CPrate | Config | Download |
| :--------: | :-------: | :-------------: | :-------: | :-----: | :-------: | :------: | :---: | :-----------------------------------------------------------------: | :-------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Cityscapes | PointRend | DCFFResNetV1c50 | 512x1024 | 160k | 18.43 | 74410 | 76.75 | \[0.0, 0.0, 0.0\] + \[0.35, 0.4, 0.1\] * 10 + \[0.3, 0.3, 0.1\] * 6 | [config](../../mmseg/dcff/dcff_pointrend_resnet50_8xb2_cityscapes.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmseg/dcff_mmseg.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmseg/dcff_mmpose_sup_20220908_172111.log) |

### 4. Pose

| Dataset | Method | Backbone | crop size | total epochs | Params(M) | FLOPs(M) | AP | CPrate | Config | Download |
| :-----: | :-------------: | :----------: | :-------: | :----------: | :-------: | :------: | :--: | :--------------------------------------------------------: | :---------------------------------------------------------------: | :--------------------------: |
| COCO | TopDown HeatMap | DCFFResNet50 | 256x192 | 300 | 26.95 | 4290 | 68.3 | \[0.0\] + \[0.2, 0.2, 0.1\] * 10 + \[0.15, 0.15, 0.1\] * 6 | [config](../../mmpose/dcff/dcff_topdown_heatmap_resnet50_coco.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | crop size | total epochs | Params(M) | FLOPs(M) | AP | CPrate | Config | Download |
| :-----: | :-------------: | :----------: | :-------: | :----------: | :-------: | :------: | :--: | :--------------------------------------------------------: | :---------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| COCO | TopDown HeatMap | DCFFResNet50 | 256x192 | 300 | 26.95 | 4290 | 68.3 | \[0.0\] + \[0.2, 0.2, 0.1\] * 10 + \[0.15, 0.15, 0.1\] * 6 | [config](../../mmpose/dcff/dcff_topdown_heatmap_resnet50_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmpose/dcff_pose.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmpose/dcff_mmpose_20220908_140331.log) |

## Citation

@@ -59,24 +59,20 @@ Then set layers' pruning rates `target_pruning_ratio` by `resnet_cls.json`.

### Train DCFF

#### Classification

##### ImageNet

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh \
configs/pruning/mmcls/dcff/dcff_resnet50_8xb32_in1k.py 4 \
configs/pruning/mmcls/dcff/dcff_resnet_8xb32_in1k.py 4 \
--work-dir $WORK_DIR
```

### Test DCFF

#### Classification

##### ImageNet

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_test.sh \
configs/pruning/mmcls/dcff/dcff_compact_resnet50_8xb32_in1k.py \
$CKPT 1 --work-dir $WORK_DIR
$WORK_DIR/fix_subnet_weight.pth 1 --work-dir $WORK_DIR
```
6 changes: 4 additions & 2 deletions configs/pruning/mmcls/dcff/dcff_compact_resnet_8xb32_in1k.py
Original file line number Diff line number Diff line change
@@ -4,10 +4,12 @@
_base_.model = dict(
_scope_='mmrazor',
type='sub_model',
cfg=dict(
cfg_path='mmcls::resnet/resnet50_8xb32_in1k.py', pretrained=False),
cfg=_base_.architecture,
fix_subnet='configs/pruning/mmcls/dcff/fix_subnet.json',
mode='mutator',
init_cfg=dict(
type='Pretrained',
prefix='architecture',
checkpoint='configs/pruning/mmcls/dcff/fix_subnet_weight.pth'))

_base_.val_cfg = dict()
30 changes: 13 additions & 17 deletions configs/pruning/mmdet/dcff/README.md
Original file line number Diff line number Diff line change
@@ -10,27 +10,27 @@ The mainstream approach for filter pruning is usually either to force a hard-cod

### 1. Classification

| Dataset | Backbone | Params(M) | FLOPs(M) | lr_type | Top-1 (%) | Top-5 (%) | CPrate | Config | Download |
| :------: | :----------: | :-------: | :------: | :-----: | :-------: | :-------: | :---------------------------------------------: | :--------------------------------------------------: | :--------------------------: |
| ImageNet | DCFFResNet50 | 15.16 | 2260 | step | 73.96 | 91.66 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmcls/dcff/dcff_resnet_8xb32_in1k.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Backbone | Params(M) | FLOPs(M) | lr_type | Top-1 (%) | Top-5 (%) | CPrate | Config | Download |
| :------: | :----------: | :-------: | :------: | :-----: | :-------: | :-------: | :---------------------------------------------: | :--------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ImageNet | DCFFResNet50 | 13.32 | 2255 | step | 74.46 | 91.99 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmcls/dcff/dcff_resnet_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmcls/dcff_cls_fix_subnet_weight.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmcls/dcff_mmcls_sup_20220906_131949.log) |

### 2. Detection

| Dataset | Method | Backbone | Style | Lr schd | Params(M) | FLOPs(M) | bbox AP | CPrate | Config | Download |
| :-----: | :---------: | :----------: | :-----: | :-----: | :-------: | :------: | :-----: | :---------------------------------------------: | :---------------------------------------------------------------: | :--------------------------: |
| COCO | Faster_RCNN | DCFFResNet50 | pytorch | step | 33.31 | 168320 | 35.8 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmdet/dcff/dcff_faster_rcnn_resnet50_8xb4_coco.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | Style | Lr schd | Params(M) | FLOPs(M) | bbox AP | CPrate | Config | Download |
| :-----: | :---------: | :----------: | :-----: | :-----: | :-------: | :------: | :-----: | :---------------------------------------------: | :---------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| COCO | Faster_RCNN | DCFFResNet50 | pytorch | step | 33.31 | 168320 | 35.8 | \[0.0\]+\[0.35,0.4,0.1\]\*10+\[0.3,0.3,0.1\]\*6 | [config](../../mmdet/dcff/dcff_faster_rcnn_resnet50_8xb4_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmdet/dcff_mmdet.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmdet/dcff_mmdet_sup_20220909_103653.log) |

### 3. Segmentation

| Dataset | Method | Backbone | crop size | Lr schd | Params(M) | FLOPs(M) | mIoU | CPrate | Config | Download |
| :--------: | :-------: | :-------------: | :-------: | :-----: | :-------: | :------: | :---: | :-----------------------------------------------------------------: | :-------------------------------------------------------------------: | :--------------------------: |
| Cityscapes | PointRend | DCFFResNetV1c50 | 512x1024 | 160k | 18.43 | 74410 | 76.75 | \[0.0, 0.0, 0.0\] + \[0.35, 0.4, 0.1\] * 10 + \[0.3, 0.3, 0.1\] * 6 | [config](../../mmseg/dcff/dcff_pointrend_resnet50_8xb2_cityscapes.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | crop size | Lr schd | Params(M) | FLOPs(M) | mIoU | CPrate | Config | Download |
| :--------: | :-------: | :-------------: | :-------: | :-----: | :-------: | :------: | :---: | :-----------------------------------------------------------------: | :-------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Cityscapes | PointRend | DCFFResNetV1c50 | 512x1024 | 160k | 18.43 | 74410 | 76.75 | \[0.0, 0.0, 0.0\] + \[0.35, 0.4, 0.1\] * 10 + \[0.3, 0.3, 0.1\] * 6 | [config](../../mmseg/dcff/dcff_pointrend_resnet50_8xb2_cityscapes.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmseg/dcff_mmseg.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmseg/dcff_mmpose_sup_20220908_172111.log) |

### 4. Pose

| Dataset | Method | Backbone | crop size | total epochs | Params(M) | FLOPs(M) | AP | CPrate | Config | Download |
| :-----: | :-------------: | :----------: | :-------: | :----------: | :-------: | :------: | :--: | :--------------------------------------------------------: | :---------------------------------------------------------------: | :--------------------------: |
| COCO | TopDown HeatMap | DCFFResNet50 | 256x192 | 300 | 26.95 | 4290 | 68.3 | \[0.0\] + \[0.2, 0.2, 0.1\] * 10 + \[0.15, 0.15, 0.1\] * 6 | [config](../../mmpose/dcff/dcff_topdown_heatmap_resnet50_coco.py) | [model](<>) \| \[log\] (\<>) |
| Dataset | Method | Backbone | crop size | total epochs | Params(M) | FLOPs(M) | AP | CPrate | Config | Download |
| :-----: | :-------------: | :----------: | :-------: | :----------: | :-------: | :------: | :--: | :--------------------------------------------------------: | :---------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| COCO | TopDown HeatMap | DCFFResNet50 | 256x192 | 300 | 26.95 | 4290 | 68.3 | \[0.0\] + \[0.2, 0.2, 0.1\] * 10 + \[0.15, 0.15, 0.1\] * 6 | [config](../../mmpose/dcff/dcff_topdown_heatmap_resnet50_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmpose/dcff_pose.pth) \\ [log](https://download.openmmlab.com/mmrazor/v1/pruning/dcff/mmpose/dcff_mmpose_20220908_140331.log) |

## Citation

@@ -59,8 +59,6 @@ Then set layers' pruning rates `target_pruning_ratio` by `resnet_det.json`.

### Train DCFF

#### Detection

##### COCO

```bash
@@ -71,12 +69,10 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh \

### Test DCFF

#### Detection

##### COCO

```bash
CUDA_VISIBLE_DEVICES=0 PORT=29500 ./tools/dist_test.sh \
configs/pruning/mmdet/dcff/dcff_compact_faster_rcnn_resnet50_8xb4_coco.py \
$CKPT 1 --work-dir $WORK_DIR
$WORK_DIR/fix_subnet_weight.pth 1 --work-dir $WORK_DIR
```
Original file line number Diff line number Diff line change
@@ -9,4 +9,7 @@
mode='mutator',
init_cfg=dict(
type='Pretrained',
prefix='architecture',
checkpoint='configs/pruning/mmdet/dcff/fix_subnet_weight.pth'))

_base_.val_cfg = dict()
Loading