Skip to content

[Feature] Support LoveDA dataset #1028

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Merged
merged 41 commits into from
Nov 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
41 commits
Select commit Hold shift + click to select a range
d26173e
update LoveDA dataset api
Junjue-Wang Oct 31, 2021
872a284
revised lint errors in dataset_prepare.md
Junjue-Wang Oct 31, 2021
bcd670c
revised lint errors in loveda.py
Junjue-Wang Oct 31, 2021
b2744ca
revised lint errors in loveda.py
Junjue-Wang Nov 4, 2021
ed6cb48
revised lint errors in dataset_prepare.md
Junjue-Wang Nov 5, 2021
2289e27
revised lint errors in dataset_prepare.md
Junjue-Wang Nov 5, 2021
159db2f
checked with isort and yapf
Junjue-Wang Nov 6, 2021
686a51d
checked with isort and yapf
Junjue-Wang Nov 6, 2021
b877e12
checked with isort and yapf
Junjue-Wang Nov 7, 2021
a116034
Revert "checked with isort and yapf"
Junjue-Wang Nov 8, 2021
6c2fccc
Revert "checked with isort and yapf"
Junjue-Wang Nov 8, 2021
78e21cc
Revert "revised lint errors in dataset_prepare.md"
Junjue-Wang Nov 8, 2021
020acda
Revert "checked with isort and yapf"
Junjue-Wang Nov 8, 2021
db3ee5a
Revert "checked with isort and yapf"
Junjue-Wang Nov 8, 2021
d55b139
Merge branch 'LoveDA' of github.com:Junjue-Wang/mmsegmentation into L…
MengzhangLI Nov 8, 2021
a493897
add configs & fix bugs
MengzhangLI Nov 9, 2021
2873226
update new branch
Junjue-Wang Nov 10, 2021
e351998
upload models&logs and add format-only
MengzhangLI Nov 10, 2021
08b76b9
change pretraied model path of HRNet
MengzhangLI Nov 10, 2021
6bca2ea
fix the errors in dataset_prepare.md
Junjue-Wang Nov 11, 2021
f609cbc
fix the errors in dataset_prepare.md and configs in loveda.py
Junjue-Wang Nov 11, 2021
4e54b90
change the description in docs_zh-CN/dataset_prepare.md
Junjue-Wang Nov 11, 2021
f666e9c
use init_cfg
MengzhangLI Nov 11, 2021
372a4e5
Merge branch 'open-mmlab:master' into New_LoveDA
Junjue-Wang Nov 15, 2021
5e9e125
fix test converage
MengzhangLI Nov 15, 2021
9ae159f
Merge branch 'New_LoveDA' of github.com:Junjue-Wang/mmsegmentation in…
MengzhangLI Nov 15, 2021
a73738e
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
96c1d53
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
c851843
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
1cca881
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
ba38868
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
3bac0c9
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
b46ffe8
adding pseudo loveda dataset
MengzhangLI Nov 15, 2021
8340e75
Update docs/dataset_prepare.md
Junjue-Wang Nov 16, 2021
4971230
Update docs_zh-CN/dataset_prepare.md
Junjue-Wang Nov 16, 2021
f99cbc2
Update docs_zh-CN/dataset_prepare.md
Junjue-Wang Nov 16, 2021
dea1b73
Delete unused lines of unittest and Add docs
MengzhangLI Nov 17, 2021
53a2121
add convert .py file
MengzhangLI Nov 22, 2021
d5a3102
add downloading links from zenodo
MengzhangLI Nov 22, 2021
463cc4c
move place of LoveDA and Cityscapes in doc
MengzhangLI Nov 24, 2021
bd9db45
move place of LoveDA and Cityscapes in doc
MengzhangLI Nov 24, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions configs/_base_/datasets/loveda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# dataset settings
dataset_type = 'LoveDADataset'
data_root = 'data/loveDA'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/train',
ann_dir='ann_dir/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline))
8 changes: 8 additions & 0 deletions configs/deeplabv3plus/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,14 @@
| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |

#### LoveDA

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.93 | 25.57 | 50.28 | 50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json) |
| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.37 | 6.00 | 50.99 | 50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json) |
| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.84 | 4.33 | 51.47 | 51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) |

Note:

- `FP16` means Mixed Precision (FP16) is adopted in training.
66 changes: 66 additions & 0 deletions configs/deeplabv3plus/deeplabv3plus.yml
Original file line number Diff line number Diff line change
Expand Up @@ -599,3 +599,69 @@ Models:
mIoU(ms+flip): 54.67
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth
- Name: deeplabv3plus_r18-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-18-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 39.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 1.93
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.28
mIoU(ms+flip): 50.47
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth
- Name: deeplabv3plus_r50-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 166.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 7.37
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.99
mIoU(ms+flip): 50.65
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth
- Name: deeplabv3plus_r101-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 230.95
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 10.84
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 51.47
mIoU(ms+flip): 51.32
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = './deeplabv3plus_r50-d8_512x512_80k_loveda.py'
model = dict(
backbone=dict(
depth=101,
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet101_v1c')))
13 changes: 13 additions & 0 deletions configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
_base_ = './deeplabv3plus_r50-d8_512x512_80k_loveda.py'
model = dict(
backbone=dict(
depth=18,
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c')),
decode_head=dict(
c1_in_channels=64,
c1_channels=12,
in_channels=512,
channels=128,
),
auxiliary_head=dict(in_channels=256, channels=64))
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = [
'../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/loveda.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(
decode_head=dict(num_classes=7), auxiliary_head=dict(num_classes=7))
8 changes: 8 additions & 0 deletions configs/hrnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,3 +73,11 @@
| ------ | ------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) |
| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) |

#### LoveDA

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.72 | 30.07 | 49.3 | 49.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825-41dcc5dc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.90 | 16.77 | 50.87 | 51.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542-95be4d2b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.25 | 9.09 | 51.04 | 51.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509-f07e47c6.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509.log.json) |
4 changes: 4 additions & 0 deletions configs/hrnet/fcn_hr18_512x512_80k_loveda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
_base_ = [
'../_base_/models/fcn_hr18.py', '../_base_/datasets/loveda.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
11 changes: 11 additions & 0 deletions configs/hrnet/fcn_hr18s_512x512_80k_loveda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
_base_ = './fcn_hr18_512x512_80k_loveda.py'
model = dict(
backbone=dict(
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://msra/hrnetv2_w18_small'),
extra=dict(
stage1=dict(num_blocks=(2, )),
stage2=dict(num_blocks=(2, 2)),
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
11 changes: 11 additions & 0 deletions configs/hrnet/fcn_hr48_512x512_80k_loveda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
_base_ = './fcn_hr18_512x512_80k_loveda.py'
model = dict(
backbone=dict(
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w48'),
extra=dict(
stage2=dict(num_channels=(48, 96)),
stage3=dict(num_channels=(48, 96, 192)),
stage4=dict(num_channels=(48, 96, 192, 384)))),
decode_head=dict(
in_channels=[48, 96, 192, 384], channels=sum([48, 96, 192, 384])))
66 changes: 66 additions & 0 deletions configs/hrnet/hrnet.yml
Original file line number Diff line number Diff line change
Expand Up @@ -447,3 +447,69 @@ Models:
mIoU(ms+flip): 53.56
Config: configs/hrnet/fcn_hr48_480x480_80k_pascal_context_59.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth
- Name: fcn_hr18s_512x512_80k_loveda
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W18-Small
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 33.26
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 1.72
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context 59
Metrics:
mIoU: 49.3
mIoU(ms+flip): 49.23
Config: configs/hrnet/fcn_hr18s_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825-41dcc5dc.pth
- Name: fcn_hr18_512x512_80k_loveda
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W18
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 59.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 2.9
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context 59
Metrics:
mIoU: 50.87
mIoU(ms+flip): 51.24
Config: configs/hrnet/fcn_hr18_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542-95be4d2b.pth
- Name: fcn_hr48_512x512_80k_loveda
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W48
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 110.01
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 6.25
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context 59
Metrics:
mIoU: 51.04
mIoU(ms+flip): 51.12
Config: configs/hrnet/fcn_hr48_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509-f07e47c6.pth
Loading