Skip to content

Commit

Permalink
Update MRCNN model export to include feature vector and saliency map (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
harimkang authored Oct 23, 2024
1 parent 63f71fb commit 7b07e6b
Show file tree
Hide file tree
Showing 7 changed files with 47 additions and 11 deletions.
10 changes: 10 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,16 @@ All notable changes to this project will be documented in this file.
(<https://github.com/openvinotoolkit/training_extensions/pull/4042>)
- Fix wrong indices setting in HLabelInfo
(<https://github.com/openvinotoolkit/training_extensions/pull/4044>)
- Add legacy template LiteHRNet_18 template
(<https://github.com/openvinotoolkit/training_extensions/pull/4049>)
- Model templates: rename model_status value 'DISCONTINUED' to 'OBSOLETE'
(<https://github.com/openvinotoolkit/training_extensions/pull/4051>)
- Enable export of feature vectors for semantic segmentation task
(<https://github.com/openvinotoolkit/training_extensions/pull/4055>)
- Update MRCNN model export to include feature vector and saliency map
(<https://github.com/openvinotoolkit/training_extensions/pull/4056>)
- Upgrade MAPI in 2.2
(<https://github.com/openvinotoolkit/training_extensions/pull/4052>)

## \[v2.1.0\]

Expand Down
2 changes: 1 addition & 1 deletion src/otx/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

__version__ = "2.2.0rc9"
__version__ = "2.2.0rc10"

import os
from pathlib import Path
Expand Down
2 changes: 1 addition & 1 deletion src/otx/algo/instance_segmentation/maskrcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def _exporter(self) -> OTXModelExporter:
"opset_version": 11,
"autograd_inlining": False,
},
output_names=["bboxes", "labels", "masks"],
output_names=["bboxes", "labels", "masks", "feature_vector", "saliency_map"] if self.explain_mode else None,
)

def load_from_otx_v1_ckpt(self, state_dict: dict, add_prefix: str = "model.") -> dict:
Expand Down
1 change: 1 addition & 0 deletions src/otx/algo/instance_segmentation/rtmdet_inst.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ def _exporter(self) -> OTXModelExporter:
"opset_version": 11,
"autograd_inlining": False,
},
# TODO(Eugene): Add XAI support for RTMDetInst
output_names=["bboxes", "labels", "masks", "feature_vector", "saliency_map"] if self.explain_mode else None,
)

Expand Down
35 changes: 30 additions & 5 deletions src/otx/algo/instance_segmentation/two_stage.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,19 +210,44 @@ def export(
self,
batch_inputs: torch.Tensor,
batch_img_metas: list[dict],
) -> tuple[torch.Tensor, ...]:
"""Export for two stage detectors."""
x = self.extract_feat(batch_inputs)
explain_mode: bool,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor] | dict:
"""Export the model for ONNX/OpenVINO.
Args:
batch_inputs (torch.Tensor): image tensor with shape (N, C, H, W).
batch_img_metas (list[dict]): image information.
explain_mode (bool): whether to return feature vector.
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor] | dict:
- bboxes (torch.Tensor): bounding boxes.
- labels (torch.Tensor): labels.
- masks (torch.Tensor): masks.
- feature_vector (torch.Tensor, optional): feature vector.
- saliency_map (torch.Tensor, optional): saliency map.
"""
x = self.extract_feat(batch_inputs)
rpn_results_list = self.rpn_head.export(
x,
batch_img_metas,
rescale=False,
)

return self.roi_head.export(
bboxes, labels, masks = self.roi_head.export(
x,
rpn_results_list,
batch_img_metas,
rescale=False,
)

if explain_mode:
feature_vector = self.feature_vector_fn(x)
return {
"bboxes": bboxes,
"labels": labels,
"masks": masks,
"feature_vector": feature_vector,
# create dummy tensor as model API supports saliency_map
"saliency_map": torch.zeros(1),
}
return bboxes, labels, masks
2 changes: 1 addition & 1 deletion src/otx/core/model/instance_segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@ def forward_for_tracing(self, inputs: Tensor) -> tuple[Tensor, ...]:
"scale_factor": (1.0, 1.0),
}
meta_info_list = [meta_info] * len(inputs)
return self.model.export(inputs, meta_info_list)
return self.model.export(inputs, meta_info_list, explain_mode=self.explain_mode)

@property
def _export_parameters(self) -> TaskLevelExportParameters:
Expand Down
6 changes: 3 additions & 3 deletions tests/integration/api/test_xai.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,9 @@ def test_predict_with_explain(
if "dino" in model_name:
pytest.skip("DINO is not supported.")

if "instance_segmentation" in recipe:
# TODO(Eugene): figure out why instance segmentation model fails after decoupling.
pytest.skip("There's issue with instance segmentation model. Skip for now.")
if any(keyword in recipe for keyword in ["rtmdet_inst_tiny", "maskdino", "maskrcnn_r50_tv"]):
# TODO(Eugene): inst-seg models not fully support yet.
pytest.skip(f"There's issue with inst-seg: {recipe}. Skip for now.")

if "rtmdet_tiny" in recipe:
# TODO (sungchul): enable xai for rtmdet_tiny (CVS-142651)
Expand Down

0 comments on commit 7b07e6b

Please # to comment.