Skip to content

Commit

Permalink
Fix XAI algorithm for Detection (#2609)
Browse files Browse the repository at this point in the history
* Impove saliency maps algorithm for Detection

* Remove extra changes

* Update unit tests

* Changes for 1 class

* Fix pre-commit

* Update CHANGELOG
  • Loading branch information
GalyaZalesskaya authored Nov 8, 2023
1 parent 794a814 commit 8559def
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 14 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ All notable changes to this project will be documented in this file.
- Fix mmcls bug not wrapping model in DataParallel on CPUs (<https://github.com/openvinotoolkit/training_extensions/pull/2601>)
- Fix h-label loss normalization issue w/ exclusive label group of singe label (<https://github.com/openvinotoolkit/training_extensions/pull/2604>)
- Fix division by zero in class incremental learning for classification (<https://github.com/openvinotoolkit/training_extensions/pull/2606>)
- Fix saliency maps calculation issue for detection models (<https://github.com/openvinotoolkit/training_extensions/pull/2609>)

## \[v1.4.3\]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,12 +60,9 @@ def func(
else:
cls_scores = self._get_cls_scores_from_feature_map(feature_map)

# Don't use softmax for tiles in tiling detection, if the tile doesn't contain objects,
# it would highlight one of the class maps as a background class
if self.use_cls_softmax and self._num_cls_out_channels > 1:
cls_scores = [torch.softmax(t, dim=1) for t in cls_scores]

batch_size, _, height, width = cls_scores[-1].size()
middle_idx = len(cls_scores) // 2
# resize to the middle feature map
batch_size, _, height, width = cls_scores[middle_idx].size()
saliency_maps = torch.empty(batch_size, self._num_cls_out_channels, height, width)
for batch_idx in range(batch_size):
cls_scores_anchorless = []
Expand All @@ -82,6 +79,11 @@ def func(
)
saliency_maps[batch_idx] = torch.cat(cls_scores_anchorless_resized, dim=0).mean(dim=0)

# Don't use softmax for tiles in tiling detection, if the tile doesn't contain objects,
# it would highlight one of the class maps as a background class
if self.use_cls_softmax:
saliency_maps[0] = torch.stack([torch.softmax(t, dim=1) for t in saliency_maps[0]])

if self._norm_saliency_maps:
saliency_maps = saliency_maps.reshape((batch_size, self._num_cls_out_channels, -1))
saliency_maps = self._normalize_map(saliency_maps)
Expand Down
16 changes: 8 additions & 8 deletions tests/unit/algorithms/detection/test_xai_detection_validity.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,19 +24,19 @@

class TestExplainMethods:
ref_saliency_shapes = {
"MobileNetV2-ATSS": (2, 4, 4),
"MobileNetV2-ATSS": (2, 13, 13),
"SSD": (81, 13, 13),
"YOLOX": (80, 13, 13),
"YOLOX": (80, 26, 26),
}

ref_saliency_vals_det = {
"MobileNetV2-ATSS": np.array([67, 216, 255, 57], dtype=np.uint8),
"YOLOX": np.array([80, 28, 42, 53, 49, 68, 72, 75, 69, 57, 65, 6, 157], dtype=np.uint8),
"SSD": np.array([119, 72, 118, 35, 39, 30, 31, 31, 36, 28, 44, 23, 61], dtype=np.uint8),
"MobileNetV2-ATSS": np.array([34, 67, 148, 132, 172, 147, 146, 155, 167, 159], dtype=np.uint8),
"YOLOX": np.array([177, 94, 147, 147, 161, 162, 164, 164, 163, 166], dtype=np.uint8),
"SSD": np.array([255, 178, 212, 90, 93, 79, 79, 80, 87, 83], dtype=np.uint8),
}

ref_saliency_vals_det_wo_postprocess = {
"MobileNetV2-ATSS": -0.10465062,
"MobileNetV2-ATSS": -0.014513552,
"YOLOX": 0.04948914,
"SSD": 0.6629989,
}
Expand Down Expand Up @@ -80,8 +80,8 @@ def test_saliency_map_det(self, template):
assert len(saliency_maps) == 2
assert saliency_maps[0].ndim == 3
assert saliency_maps[0].shape == self.ref_saliency_shapes[template.name]
actual_sal_vals = saliency_maps[0][0][0].astype(np.int8)
ref_sal_vals = self.ref_saliency_vals_det[template.name].astype(np.int8)
actual_sal_vals = saliency_maps[0][0][0][:10].astype(np.int16)
ref_sal_vals = self.ref_saliency_vals_det[template.name].astype(np.uint8)
assert np.all(np.abs(actual_sal_vals - ref_sal_vals) <= 1)

@e2e_pytest_unit
Expand Down

0 comments on commit 8559def

Please # to comment.