Skip to content

Commit

Permalink
Merge pull request #4002 from openvinotoolkit/kp/merge_back_rc4_2.2.0
Browse files Browse the repository at this point in the history
Back merge 2.2.0_rc4
  • Loading branch information
yunchu authored Oct 8, 2024
2 parents 8cc1961 + 31823cd commit 878a844
Show file tree
Hide file tree
Showing 6 changed files with 61 additions and 8 deletions.
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ All notable changes to this project will be documented in this file.
(https://github.com/openvinotoolkit/training_extensions/pull/3970)
- Add tiling for semantic segmentation
(https://github.com/openvinotoolkit/training_extensions/pull/3954)
- Add 3D Object Detection task with MonoDETR model
(https://github.com/openvinotoolkit/training_extensions/pull/3979)

### Enhancements

Expand Down Expand Up @@ -82,6 +84,8 @@ All notable changes to this project will be documented in this file.
(<https://github.com/openvinotoolkit/training_extensions/pull/3964>)
- Add type checker in converter for callable functions (optimizer, scheduler)
(<https://github.com/openvinotoolkit/training_extensions/pull/3968>)
- Change sematic segmentation to consider bbox only annotations
(<https://github.com/openvinotoolkit/training_extensions/pull/3996>)

### Bug fixes

Expand All @@ -95,6 +99,8 @@ All notable changes to this project will be documented in this file.
(<https://github.com/openvinotoolkit/training_extensions/pull/3942>)
- Change categories mapping logic
(<https://github.com/openvinotoolkit/training_extensions/pull/3946>)
- Fix config converter for tiling
(<https://github.com/openvinotoolkit/training_extensions/pull/3973>)

## \[v2.1.0\]

Expand Down
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,7 @@ In addition to the examples above, please refer to the documentation for tutoria
- Include Geti arrow dataset subset names
- Include full image with anno in case there's no tile in tile dataset
- Add type checker in converter for callable functions (optimizer, scheduler)
- Change sematic segmentation to consider bbox only annotations

### Bug fixes

Expand All @@ -204,6 +205,7 @@ In addition to the examples above, please refer to the documentation for tutoria
- Add num_devices in Engine for multi-gpu training
- Add missing tile recipes and various tile recipe changes
- Change categories mapping logic
- Fix config converter for tiling

### Known issues

Expand Down
2 changes: 2 additions & 0 deletions docs/source/guide/release_notes/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ Enhancements
- Include Geti arrow dataset subset names
- Include full image with anno in case there's no tile in tile dataset
- Add type checker in converter for callable functions (optimizer, scheduler)
- Change sematic segmentation to consider bbox only annotations

Bug fixes
^^^^^^^^^
Expand All @@ -46,6 +47,7 @@ Bug fixes
- Add num_devices in Engine for multi-gpu training
- Add missing tile recipes and various tile recipe changes
- Change categories mapping logic
- Fix config converter for tiling

v2.1.0 (2024.07)
----------------
Expand Down
12 changes: 6 additions & 6 deletions src/otx/core/data/dataset/segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import cv2
import numpy as np
import torch
from datumaro.components.annotation import Ellipse, Image, Mask, Polygon
from datumaro.components.annotation import Bbox, Ellipse, Image, Mask, Polygon, RotatedBbox
from torchvision import tv_tensors

from otx.core.data.entity.base import ImageInfo
Expand Down Expand Up @@ -100,11 +100,11 @@ def _extract_class_mask(item: DatasetItem, img_shape: tuple[int, int], ignore_in
raise ValueError(msg, ignore_index)

# fill mask with background label if we have Polygon/Ellipse annotations
fill_value = 0 if isinstance(item.annotations[0], (Ellipse, Polygon)) else ignore_index
fill_value = 0 if isinstance(item.annotations[0], (Ellipse, Polygon, Bbox, RotatedBbox)) else ignore_index
class_mask = np.full(shape=img_shape[:2], fill_value=fill_value, dtype=np.uint8)

for mask in sorted(
[ann for ann in item.annotations if isinstance(ann, (Mask, Ellipse, Polygon))],
[ann for ann in item.annotations if isinstance(ann, (Mask, Ellipse, Polygon, Bbox, RotatedBbox))],
key=lambda ann: ann.z_order,
):
index = mask.label
Expand All @@ -113,7 +113,7 @@ def _extract_class_mask(item: DatasetItem, img_shape: tuple[int, int], ignore_in
msg = "Mask's label index should not be None."
raise ValueError(msg)

if isinstance(mask, (Ellipse, Polygon)):
if isinstance(mask, (Ellipse, Polygon, Bbox, RotatedBbox)):
polygons = np.asarray(mask.as_polygon(), dtype=np.int32).reshape((-1, 1, 2))
class_index = index + 1 # NOTE: disregard the background index. Objects start from index=1
this_class_mask = cv2.drawContours(
Expand Down Expand Up @@ -194,8 +194,8 @@ def __init__(
@property
def has_polygons(self) -> bool:
"""Check if the dataset has polygons in annotations."""
ann_types = {str(ann_type).split(".")[-1] for ann_type in self.dm_subset.ann_types()}
if ann_types & {"polygon", "ellipse"}:
# all polygon-like format should be considered as polygons
if {ann_type.name for ann_type in self.dm_subset.ann_types()} & {"polygon", "ellipse", "bbox", "rotated_bbox"}:
return True
return False

Expand Down
11 changes: 9 additions & 2 deletions tests/unit/core/data/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
import cv2
import numpy as np
import pytest
from datumaro.components.annotation import Bbox, Label, LabelCategories, Mask, Polygon
from datumaro.components.annotation import AnnotationType, Bbox, Label, LabelCategories, Mask, Polygon
from datumaro.components.dataset import Dataset as DmDataset
from datumaro.components.dataset_base import DatasetItem
from datumaro.components.media import Image
Expand Down Expand Up @@ -89,7 +89,7 @@ def fxt_dm_item(request, tmpdir) -> DatasetItem:
media=media,
annotations=[
Label(label=0),
Bbox(x=0, y=0, w=1, h=1, label=0),
Bbox(x=200, y=200, w=1, h=1, label=0),
Mask(label=0, image=np.eye(10, dtype=np.uint8)),
Polygon(points=[399.0, 570.0, 397.0, 572.0, 397.0, 573.0, 394.0, 576.0], label=0),
],
Expand Down Expand Up @@ -133,6 +133,12 @@ def fxt_mock_dm_subset(mocker: MockerFixture, fxt_dm_item: DatasetItem) -> Magic
mock_dm_subset.__getitem__.return_value = fxt_dm_item
mock_dm_subset.__len__.return_value = 1
mock_dm_subset.categories().__getitem__.return_value = LabelCategories.from_iterable(_LABEL_NAMES)
mock_dm_subset.ann_types.return_value = [
AnnotationType.label,
AnnotationType.bbox,
AnnotationType.mask,
AnnotationType.polygon,
]
return mock_dm_subset


Expand All @@ -142,6 +148,7 @@ def fxt_mock_det_dm_subset(mocker: MockerFixture, fxt_dm_item_bbox_only: Dataset
mock_dm_subset.__getitem__.return_value = fxt_dm_item_bbox_only
mock_dm_subset.__len__.return_value = 1
mock_dm_subset.categories().__getitem__.return_value = LabelCategories.from_iterable(_LABEL_NAMES)
mock_dm_subset.ann_types.return_value = [AnnotationType.bbox]
return mock_dm_subset


Expand Down
36 changes: 36 additions & 0 deletions tests/unit/core/data/dataset/test_segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

"""Unit tests of classification datasets."""

from otx.core.data.dataset.segmentation import OTXSegmentationDataset
from otx.core.data.entity.segmentation import SegDataEntity


class TestOTXSegmentationDataset:
def test_get_item(
self,
fxt_mock_dm_subset,
) -> None:
dataset = OTXSegmentationDataset(
dm_subset=fxt_mock_dm_subset,
transforms=[lambda x: x],
mem_cache_img_max_size=None,
max_refetch=3,
)
assert isinstance(dataset[0], SegDataEntity)
assert "background" in [label_name.lower() for label_name in dataset.label_info.label_names]

def test_get_item_from_bbox_dataset(
self,
fxt_mock_det_dm_subset,
) -> None:
dataset = OTXSegmentationDataset(
dm_subset=fxt_mock_det_dm_subset,
transforms=[lambda x: x],
mem_cache_img_max_size=None,
max_refetch=3,
)
assert isinstance(dataset[0], SegDataEntity)
# OTXSegmentationDataset should add background when getting a dataset which includes only bbox annotations
assert "background" in [label_name.lower() for label_name in dataset.label_info.label_names]

0 comments on commit 878a844

Please # to comment.