Skip to content

pamelafox/vector-embeddings-demos

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vector embedding demos

A vector embedding encodes an input as a list of floating point numbers.

"dog" → [0.017198, -0.007493, -0.057982, 0.054051, -0.028336, 0.019245,…]

Different models output different embeddings, with varying lengths.

Model Encodes Vector length
word2vec words 300
Sbert (Sentence-Transformers) text (up to ~400 words) 768
OpenAI text-embedding-ada-002 text (up to 8191 tokens) 1536
OpenAI text-embedding-3-small text (up to 8191 tokens) 256-1536
OpenAI text-embedding-3-large text (up to 8191 tokens) 256-3072
Azure AI Vision image or text 1024

Vector embeddings are commonly used for similarity search, fraud detection, recommendation systems, and RAG (Retrieval-Augmented Generation).

This repository contains a visual exploration of vectors, using several embedding models.

Before running the notebooks, install the requirements:

pip install -r requirements.txt

Then explore these notebooks:

These notebooks are also provided, but aren't necessary unless you're generating new embeddings data.

About

Various demonstrations of vector embeddings and concepts.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published