We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
pd.infer_freq
Series["timestamp[s][pyarrow]"]
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
import pandas as pd data = ["2022-01-01T10:00:00", "2022-01-01T10:00:30", "2022-01-01T10:01:00"] pd_series = pd.Series(data).astype("timestamp[s][pyarrow]") pd_index = pd.Index(data).astype("timestamp[s][pyarrow]") assert pd.infer_freq(pd_index.values) == "30s" # ✅ assert pd.infer_freq(pd_series.values) == "30s" # ✅ assert pd.infer_freq(pd_index) == "30s" # ✅ assert pd.infer_freq(pd_series) == "30s" # ❌
TypeError: cannot infer freq from a non-convertible dtype on a Series of timestamp[s][pyarrow]
However, it works with Index-objects of this dtype, or if we call .values (which converts it to list[pd.Timedelta])
Index
.values
list[pd.Timedelta]
There should be no TypeError here, especially since it works with Index objects of this dtype.
TypeError
commit : d9cdd2e python : 3.11.7.final.0 python-bits : 64 OS : Linux OS-release : 6.5.0-28-generic Version : #29~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 4 14:39:20 UTC 2 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8
pandas : 2.2.2 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.9.0.post0 setuptools : 69.5.1 pip : 24.0 Cython : None pytest : 8.1.1 hypothesis : 6.100.1 sphinx : 7.3.7 blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 3.1.3 IPython : 8.23.0 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.3 bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : 2024.3.1 gcsfs : None matplotlib : 3.8.4 numba : None numexpr : None odfpy : None openpyxl : 3.1.2 pandas_gbq : None pyarrow : 16.0.0 pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.13.0 sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None zstandard : None tzdata : 2024.1 qtpy : None pyqt5 : None
The text was updated successfully, but these errors were encountered:
fixed pandas-dev#58403
27fdbfd
Successfully merging a pull request may close this issue.
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
However, it works with
Index
-objects of this dtype, or if we call.values
(which converts it tolist[pd.Timedelta]
)Expected Behavior
There should be no
TypeError
here, especially since it works with Index objects of this dtype.Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.11.7.final.0
python-bits : 64
OS : Linux
OS-release : 6.5.0-28-generic
Version : #29~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 4 14:39:20 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 69.5.1
pip : 24.0
Cython : None
pytest : 8.1.1
hypothesis : 6.100.1
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.23.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.3.1
gcsfs : None
matplotlib : 3.8.4
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 16.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: