This repository contains the implementation of ASD-DiagNet algorithm.
Please cite the following paper if you use our work:
Taban Eslami, Fahad Saeed, Vahid Mirjalili, Alvis Fong and Angela Laird (2019) ASD-DiagNet: A hybrid learning approach for detection of Autism Spectrum Disorder using fMRI data, Frontiers in Neuroinformatics, 13 (2019): 70. Paper link
- A server containing CUDA enabled GPU with compute capability 3.5 or above.
- Python version 3.5 or above
- Pytorch version 0.4.1
- CUDA version 8 or above
- Jupyter notebook
Please provide the parameters in the first cell of Jupyter notebook as follows:
-
Atlas name: ("cc200", "aal", or "dosenbach160")
e.g.
p_ROI = "cc200"
-
Number of k for k-fold cross-validation:
e.g.
p_fold = 10
-
Classification mode: ("whole" or "percenter")
e.g.
p_mode = "percenter"
-
Name of the center: (in case of performing per-center classification)
e.g.
p_center = "Stanford"
-
Classification method: ("ASD-DiagNet", "rf" or "SVM))
e.g.
p_Method = "ASD-DiagNet"
-
Utilizing augmentation technique: (in case of using ASD-DiagNet, True or False)
e.g.
p_augmentation = False
In case of any questions please contact: fsaeed@fiu.edu