This package provides Julia with functions to compute some thermodynamic properties of moist air. The model uses real gas correlations as recommended by ASHRAE (see reference [5]).
Besides moist air, this package also calculates the properties of dry air and saturated water vapor. It is part of a larger effort to model the thermodynamic (and transport) properties of different types of fluids.
julia-repl``` julia> ] (v1.4) pkg> add https://github.com/pjabardo/Psychro.jl/
## User interface - Thermodynamic properties of moist air, dry air and saturated water vapor.
The methods listed below calculate thermodynamic properties of moist air:
volume(MoistAir, T, HumidityType, humidity, P[, outunit])
volume(MoistAir, T, HumidityType, humidity, P[, outunit])
density(MoistAir, T, HumidityType, humidity, P[, outunit])
enthalpy(MoistAir, T, HumidityType, humidity, P[, outunit])
enthalpym(MoistAir, T, HumidityType, humidity, P[, outunit])
entropy(MoistAir, T, HumidityType, humidity, P[, outunit])
entropym(MoistAir, T, HumidityType, humidity, P[, outunit])
compressfactor(MoistAir, T, HumidityType, humidity, P[, outunit])
dewpoint(MoistAir, T, HumidityType, humidity, P[, outunit])
wetbulb(MoistAir, T, HumidityType, humidity, P[, outunit])
humrat(MoistAir, T, HumidityType, humidity, P)
relhum(MoistAir, T, HumidityType, humidity, P)
humrat(MoistAir, T, HumidityType, humidity, P)
spechum(MoistAir, T, HumidityType, humidity, P)
molarfrac(MoistAir, T, HumidityType, humidity, P)
The methods listed above calculate the following thermodynamic properties of moist air:
* `volume` Specific volume
* `volumem` Molar volume
* `density` Density
* `enthalpy` Specific enthalpy
* `enthalpym` Molar enthalpy
* `entropy` Specific entropy
* `entropym` Molar entropy
* `compressfactor` Compressibility factor Z
* `dewpoint` Dew point temperature
* `wetbulb` Adiabatic saturation temperature
* `humrat` Humidity ratio
* `relhum` Relative humidity
* `spechum` Specific humidity
* `molarfrac` Molar fraction of water vapor
The humidity is specified using two parameters:
* How the humidity is specified
* The actual value of humidity
The following types are used to characterize the humidity.
* `WetBulb` for wet bulb temperature, actually adiabatic saturation temperature
* `DewPoint` Dew point temperature
* `RelHum` Relative humidity
* `HumRat` Humidity ratio (kg of vapor / kg of dry air)
* `SpecHum` Specific humidity (kg of vapor / kg of moist air)
* `MolarFrac` Molar fraction of water vapor.
## Examples
```julia
julia> volume(MoistAir, 293.15, WetBulb, 291.15, 101325.0)
0.8464079202783964
julia> volume(MoistAir, 293.15, DewPoint, 291.15, 101325.0)
0.8475219875187474
julia> volume(MoistAir, 293.15, RelHum, 0.7, 101325.0)
0.843889817602806
julia> volume(MoistAir, 20.0u"°C", DewPoint, 60.0u"°F", 1.0u"atm")
0.8449934929585231 kg^-1 m^3
julia> volumem(MoistAir, 293.15, RelHum, 0.5, 93000.0)
0.026199080086890276
julia> volumem(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa", u"inch^3/kmol")
1.598733210336603e6 in^3 kmol^-1
julia> density(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
1.0976075893895811 kg m^-3
julia> density(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa", u"lb/inch^3")
3.965358988338535e-5 in^-3 lb
julia> volumem(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa", u"inch^3/kmol")
1.598733210336603e6 in^3 kmol^-1
julia> enthalpy(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
50667.43014746832 kg^-1 J
julia> enthalpym(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
1439.6551689935861 J mol^-1
julia> compressfactor(MoistAir, -90.0u"°C", RelHum, 0.01, 4.5u"MPa")
0.8552758629097985
julia> wetbulb(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa", u"°C")
17.0 °C
julia> dewpoint(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa", u"°C")
15.475836053510477 °C
julia> humrat(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
0.012032930694441925
julia> relhum(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
0.7517801524436909
julia> spechum(MoistAir, 20.0u"°C", WetBulb, 17.0u"°C", 93u"kPa")
0.011889860823189923
- [1] Wexler, A. and Hyland, R. W., "Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K", ASHRAE Transactions, 1983.
- [2] Wexler, A. and Hyland, R. W., "Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K at pressures to 5 MPa
- [3] Himmelblaum D. M., "Solubilities of inert gases in water, 0oC to near the critical point of water", Journal of Chemical and Engineering Data, Vol. 5, No. 1, January 1960.
- [4] Kell, George S., "Density, thermal expansivity, and compressibility of liquid water from 0oC to 150oC: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale", Journal of Chemical and Engineering Data, Vol. 20, No. 1, 1975.
- [5] ASHRAE, "Psychrometrics: Theory and Practice", ASHRAE, 1996.