##Pre-requisites:
- Intel powered Edge device (UP^2) with Ubuntu 16.04
- USB webcam (/dev/video0)
- OpenVINO installation with ORT (ONX Runtime) execution provider
- Python OpenCV
##Folders: #models (models.onnx, labesl.txt)
- ONNX pre-trained models for Image_classificaiton
- ONNX pre-trained models for object_detection #src
- Python Application code for Image Classification and object detection
- objdet/model.config - Model configuration file
##Testing
- Folder "models/image_classification" has few pre-trained onnx models
- Execute command: src/imgcls$ python3 onnx_image_classifciation.py model.config
- Expected Output: Predicted image classification result with label
- ##Example:model.config (for Image Classification)
{
"Network":0,
"modeltype":"onnx model",
"Input":"cam",
"display":1,
"mean_vec":[0.485, 0.456, 0.406],
"stddev_vec":[0.229, 0.224, 0.225],
"ScaleWidth":224,
"ScaleHeight":224,
"InputFormat":"RGB",
"Runtime":1,
"MODEL_FILENAME":"../../models/image_classification/dog_n_cat/model.onnx",
"LABELS_FILENAME":"../../models/image_classification/dog_n_cat/labels.txt"
}
Classification results
- Folder "models/object_detect/" has face detection pre-trained onnx model
- Execute command: src/objdet$ python3 onnxruntime_predict.py model.config
- Expected Output: Renders webcam video frames with inference results (bounding box, detection label and score)
- ##Example:model.config (for Object detection)
{
"Network":0,
"modeltype":"onnx model",
"Input":"cam",
"display":1,
"Anchors": [[0.573, 0.677], [1.87, 2.06], [3.34, 5.47], [7.88, 3.53], [9.77, 9.17]],
"ScaleWidth":416,
"ScaleHeight":416,
"InputFormat":"RGB",
"ConfThreshold":0.5,
"IOU_THRESHOLD":0.45,
"Runtime":1,
"MODEL_FILENAME":"../../models/object_detection/face_detect/model.onnx",
"LABELS_FILENAME":"../../models/object_detection/face_detect/labels.txt"
}
Face Detection output
Car and Traffic Light Detection