A Python library for coordinate- and image-based meta-analysis.
- Coordinate-based methods (
nimare.meta.cbma
)- Kernel-based methods
- Activation likelihood estimation (ALE)
- Specific coactivation likelihood estimation (SCALE)
- Multilevel kernel density analysis (MKDA)
- Kernel density analysis (KDA)
- Model-based methods (
nimare.meta.cbma.model
)- Bayesian hierarchical cluster process model (BHICP)
- Hierarchical Poisson/Gamma random field model (HPGRF)
- Spatial Bayesian latent factor regression (SBLFR)
- Spatial binary regression (SBR)
- Kernel-based methods
- Image-based methods (
nimare.meta.ibma
)- Mixed effects general linear model (MFX-GLM)
- Random effects general linear model (RFX-GLM)
- Fixed effects general linear model (FFX-GLM)
- Stouffer's meta-analysis
- Random effects Stouffer's meta-analysis
- Weighted Stouffer's meta-analysis
- Fisher's meta-analysis
- Automated annotation (
nimare.annotate
)- Tf-idf vectorization of text (
nimare.annotate.tfidf
) - Ontology-based annotation (
nimare.annotate.ontology
)- Cognitive Paradigm Ontology (
nimare.annotate.ontology.cogpo
) - Cognitive Atlas (
nimare.annotate.ontology.cogat
)
- Cognitive Paradigm Ontology (
- Topic model-based annotation (
nimare.annotate.topic
)- Latent Dirichlet allocation (
nimare.annotate.topic.lda
) - Generalized correspondence latent Dirichlet allocation
(
nimare.annotate.topic.gclda
) - Deep Boltzmann machines (
nimare.annotate.topic.boltzmann
)
- Latent Dirichlet allocation (
- Vector model-based annotation (
nimare.annotate.vector
)- Global Vectors for Word Representation model
(
nimare.annotate.vector.word2brain
) - Text2Brain model (
nimare.annotate.vector.text2brain
)
- Global Vectors for Word Representation model
(
- Tf-idf vectorization of text (
- Database extraction (
nimare.dataset.extract
)- NeuroVault
- Neurosynth
- Brainspell
- PubMed abstract extraction
- Functional characterization analysis (
nimare.decode
)- BrainMap decoding
- Neurosynth correlation-based decoding
- Neurosynth MKDA-based decoding
- BrainMap decoding
- Text2brain encoding
- Generalized correspondence latent Dirichlet allocation (GCLDA)
- Meta-analytic parcellation (
nimare.parcellate
)- Meta-analytic parcellation based on text (MAPBOT)
- Coactivation-base parcellation (CBP)
- Meta-analytic activation modeling-based parcellation (MAMP)
- Common workflows (
nimare.workflows
)- Meta-analytic coactivation modeling (MACM)
- Meta-analytic clustering analysis
- Meta-analytic independent components analysis (metaICA)
pip install git+https://github.com/neurostuff/NiMARE.git#egg=nimare[peaks2maps-cpu]
If you have TensorFlow configured to take advantage of your local GPU use
pip install git+https://github.com/neurostuff/NiMARE.git#egg=nimare[peaks2maps-gpu]
To build the Docker image:
docker build -t test/nimare .
To run the Docker container:
docker run -it -v `pwd`:/home/neuro/code/NiMARE -p8888:8888 test/nimare bash
Once inside the container, you can install NiMARE:
python /home/neuro/code/NiMARE/setup.py develop
Please see our contributing guidelines for more information on contributing to NiMARE.
We ask that all contributions to NiMARE
respect our code of conduct.