Skip to content

Check correctness for score_mod implementations #103

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions attn_gym/utils.py
Original file line number Diff line number Diff line change
@@ -100,9 +100,9 @@ def visualize_attention_scores(
Returns:
None
"""
assert (
score_mod is not None or mask_mod is not None
), "Must provide either score_mod or mask_mod"
assert score_mod is not None or mask_mod is not None, (
"Must provide either score_mod or mask_mod"
)
query = query[batch_idx, head_idx, :, :]
key = key[batch_idx, head_idx, :, :]
scores_viz = create_score_mod(
36 changes: 22 additions & 14 deletions examples/benchmark.py
Original file line number Diff line number Diff line change
@@ -26,18 +26,19 @@
from attn_gym.mods import generate_alibi_bias, generate_tanh_softcap


def _causal_score(score, b, h, q_idx, kv_idx):
return causal_mask(b, h, q_idx, kv_idx).where(score, torch.finfo(score.dtype).min)


AVAILABLE_EXAMPLES = {
"causal": lambda: test_mask(mask_mod=causal_mask),
"alibi": lambda: test_mask(score_mod=generate_alibi_bias(16), skip_correctness=True),
"causal_score": lambda: test_mask(score_mod=_causal_score),
"alibi": lambda: test_mask(score_mod=generate_alibi_bias(16), skip_correctness=False),
"sliding_window": lambda: test_mask(mask_mod=generate_sliding_window(window_size=1024)),
"prefix_lm": lambda: test_mask(mask_mod=generate_prefix_lm_mask(prefix_length=1024)),
"document": lambda: run_document_masking(max_seq_len=32768, num_docs=12),
"softcap": lambda: test_mask(
score_mod=generate_tanh_softcap(30, approx=False), skip_correctness=True
),
"softcap_approx": lambda: test_mask(
score_mod=generate_tanh_softcap(30, approx=True), skip_correctness=True
),
"softcap": lambda: test_mask(score_mod=generate_tanh_softcap(30, approx=False)),
"softcap_approx": lambda: test_mask(score_mod=generate_tanh_softcap(30, approx=True)),
}


@@ -91,8 +92,15 @@ def test_mask(
block_mask = create_block_mask_cached(mask_mod, 1, 1, S, S, device=device)
else:
block_mask = None
sdpa_mask_fn = mask_mod if mask_mod is not None else score_mod
mask = create_mask(sdpa_mask_fn, 1, 1, S, S, device=device)
mask = create_mask(mask_mod, 1, H, S, S, device=device) if mask_mod else None
bias = create_mask(score_mod, 1, H, S, S, device=device) if score_mod else None
if bias is not None:
bias = bias.to(dtype=data_type)
if mask:
bias = bias.where(mask, torch.finfo(data_type).min)
mask = bias
else:
assert mask is not None

qkv = [
torch.randn(B, H, S, D, device=device, dtype=data_type, requires_grad=True)
@@ -121,6 +129,11 @@ def test_mask(

del fwd_out
torch.cuda.empty_cache()
(
(causal_fa2_time, causal_fa2_bw_time),
(sdpa_mask_time, sdpa_mask_bw_time),
(flex_ms, flex_bw_ms),
) = times

print_header(
f"{score_mod.__name__ if score_mod is not None else mask_mod.__name__}".replace(
@@ -152,11 +165,6 @@ def test_mask(

print("Correctness check passed ✅")

(
(causal_fa2_time, causal_fa2_bw_time),
(sdpa_mask_time, sdpa_mask_bw_time),
(flex_ms, flex_bw_ms),
) = times
# Usage in your results formatting:
results = [
[
Loading