Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Mask for Adversarial Attacks #1043

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 17 additions & 4 deletions captum/robust/_core/fgsm.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/usr/bin/env python3
from typing import Any, Callable, Optional, Tuple
from typing import Any, Callable, Optional, Tuple, Union

import torch
from captum._utils.common import (
Expand Down Expand Up @@ -82,6 +82,7 @@ def perturb(
target: Any,
additional_forward_args: Any = None,
targeted: bool = False,
mask: Optional[TensorOrTupleOfTensorsGeneric] = None,
) -> TensorOrTupleOfTensorsGeneric:
r"""
This method computes and returns the perturbed input for each input tensor.
Expand Down Expand Up @@ -130,6 +131,12 @@ def perturb(
Default: None.
targeted (bool, optional): If attack should be targeted.
Default: False.
mask (Tensor or tuple[Tensor, ...], optional): mask of zeroes and ones
that defines which elements within the input tensor(s) are
perturbed. This mask must have the same shape and
dimensionality as the inputs. If this argument is not
provided, all elements will be perturbed.
Default: None.


Returns:
Expand All @@ -144,6 +151,11 @@ def perturb(
"""
is_inputs_tuple = _is_tuple(inputs)
inputs: Tuple[Tensor, ...] = _format_tensor_into_tuples(inputs)
masks: Union[Tuple[int, ...], Tuple[Tensor, ...]] = (
_format_tensor_into_tuples(mask)
if (mask is not None)
else (1,) * len(inputs)
)
gradient_mask = apply_gradient_requirements(inputs)

def _forward_with_loss() -> Tensor:
Expand All @@ -161,7 +173,7 @@ def _forward_with_loss() -> Tensor:

grads = compute_gradients(_forward_with_loss, inputs)
undo_gradient_requirements(inputs, gradient_mask)
perturbed_inputs = self._perturb(inputs, grads, epsilon, targeted)
perturbed_inputs = self._perturb(inputs, grads, epsilon, targeted, masks)
perturbed_inputs = tuple(
self.bound(perturbed_inputs[i]) for i in range(len(perturbed_inputs))
)
Expand All @@ -173,6 +185,7 @@ def _perturb(
grads: Tuple,
epsilon: float,
targeted: bool,
masks: Tuple,
) -> Tuple:
r"""
A helper function to calculate the perturbed inputs given original
Expand All @@ -183,9 +196,9 @@ def _perturb(
inputs = tuple(
torch.where(
torch.abs(grad) > self.zero_thresh,
inp + multiplier * epsilon * torch.sign(grad),
inp + multiplier * epsilon * torch.sign(grad) * mask,
inp,
)
for grad, inp in zip(grads, inputs)
for grad, inp, mask in zip(grads, inputs, masks)
)
return inputs
35 changes: 29 additions & 6 deletions captum/robust/_core/pgd.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/usr/bin/env python3
from typing import Any, Callable
from typing import Any, Callable, Optional, Tuple, Union

import torch
import torch.nn.functional as F
Expand Down Expand Up @@ -78,6 +78,7 @@ def perturb(
targeted: bool = False,
random_start: bool = False,
norm: str = "Linf",
mask: Optional[TensorOrTupleOfTensorsGeneric] = None,
) -> TensorOrTupleOfTensorsGeneric:
r"""
This method computes and returns the perturbed input for each input tensor.
Expand Down Expand Up @@ -134,6 +135,12 @@ def perturb(
norm (str, optional): Specifies the norm to calculate distance from
original inputs: ``Linf`` | ``L2``.
Default: ``Linf``
mask (Tensor or tuple[Tensor, ...], optional): mask of zeroes and ones
that defines which elements within the input tensor(s) are
perturbed. This mask must have the same shape and
dimensionality as the inputs. If this argument is not
provided, all elements are perturbed.
Default: None.

Returns:

Expand All @@ -157,15 +164,29 @@ def _clip(inputs: Tensor, outputs: Tensor) -> Tensor:

is_inputs_tuple = _is_tuple(inputs)
formatted_inputs = _format_tensor_into_tuples(inputs)
formatted_masks: Union[Tuple[int, ...], Tuple[Tensor, ...]] = (
_format_tensor_into_tuples(mask)
if (mask is not None)
else (1,) * len(formatted_inputs)
)
perturbed_inputs = formatted_inputs
if random_start:
perturbed_inputs = tuple(
self.bound(self._random_point(formatted_inputs[i], radius, norm))
self.bound(
self._random_point(
formatted_inputs[i], radius, norm, formatted_masks[i]
)
)
for i in range(len(formatted_inputs))
)
for _i in range(step_num):
perturbed_inputs = self.fgsm.perturb(
perturbed_inputs, step_size, target, additional_forward_args, targeted
perturbed_inputs,
step_size,
target,
additional_forward_args,
targeted,
formatted_masks,
)
perturbed_inputs = tuple(
_clip(formatted_inputs[j], perturbed_inputs[j])
Expand All @@ -178,7 +199,9 @@ def _clip(inputs: Tensor, outputs: Tensor) -> Tensor:
)
return _format_output(is_inputs_tuple, perturbed_inputs)

def _random_point(self, center: Tensor, radius: float, norm: str) -> Tensor:
def _random_point(
self, center: Tensor, radius: float, norm: str, mask: Union[Tensor, int]
) -> Tensor:
r"""
A helper function that returns a uniform random point within the ball
with the given center and radius. Norm should be either L2 or Linf.
Expand All @@ -190,9 +213,9 @@ def _random_point(self, center: Tensor, radius: float, norm: str) -> Tensor:
r = (torch.rand(u.size(0)) ** (1.0 / d)) * radius
r = r[(...,) + (None,) * (r.dim() - 1)]
x = r * unit_u
return center + x
return center + (x * mask)
elif norm == "Linf":
x = torch.rand_like(center) * radius * 2 - radius
return center + x
return center + (x * mask)
else:
raise AssertionError("Norm constraint must be L2 or Linf.")
59 changes: 57 additions & 2 deletions tests/robust/test_FGSM.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/usr/bin/env python3
from typing import Any, Callable, List, Tuple, Union
from typing import Any, Callable, List, Optional, Tuple, Union

import torch
from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric
Expand Down Expand Up @@ -128,6 +128,60 @@ def test_attack_bound(self) -> None:
upper_bound=5.0,
)

def test_attack_masked_tensor(self) -> None:
model = BasicModel()
input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]], requires_grad=True)
mask = torch.tensor([[1, 0, 0, 1, 1]])
self._FGSM_assert(
model, input, 1, 0.1, [[2.0, -9.0, 9.0, 1.0, -3.0]], mask=mask
)

def test_attack_masked_multiinput(self) -> None:
model = BasicModel2()
input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True)
input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True)
mask1 = torch.tensor([[1, 0], [1, 0]])
mask2 = torch.tensor([[0, 0], [0, 0]])
self._FGSM_assert(
model,
(input1, input2),
0,
0.25,
([[3.75, -1.0], [2.75, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]),
mask=(mask1, mask2),
)

def test_attack_masked_loss_defined(self) -> None:
model = BasicModel_MultiLayer()
add_input = torch.tensor([[-1.0, 2.0, 2.0]])
input = torch.tensor([[1.0, 6.0, -3.0]])
labels = torch.tensor([0])
mask = torch.tensor([[0, 0, 1]])
loss_func = CrossEntropyLoss(reduction="none")
adv = FGSM(model, loss_func)
perturbed_input = adv.perturb(
input, 0.2, labels, additional_forward_args=(add_input,), mask=mask
)
assertTensorAlmostEqual(
self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max"
)

def test_attack_masked_bound(self) -> None:
model = BasicModel()
input = torch.tensor([[9.0, 10.0, -6.0, -1.0]])
mask = torch.tensor([[1, 0, 1, 0]])
self._FGSM_assert(
model,
input,
3,
0.2,
[[5.0, 5.0, -5.0, -1.0]],
targeted=True,
lower_bound=-5.0,
upper_bound=5.0,
mask=mask,
)

def _FGSM_assert(
self,
model: Callable,
Expand All @@ -139,10 +193,11 @@ def _FGSM_assert(
additional_inputs: Any = None,
lower_bound: float = float("-inf"),
upper_bound: float = float("inf"),
mask: Optional[TensorOrTupleOfTensorsGeneric] = None,
) -> None:
adv = FGSM(model, lower_bound=lower_bound, upper_bound=upper_bound)
perturbed_input = adv.perturb(
inputs, epsilon, target, additional_inputs, targeted
inputs, epsilon, target, additional_inputs, targeted, mask
)
if isinstance(perturbed_input, Tensor):
assertTensorAlmostEqual(
Expand Down
100 changes: 100 additions & 0 deletions tests/robust/test_PGD.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,3 +108,103 @@ def test_attack_random_start(self) -> None:
)
norm = torch.norm((perturbed_input - input).squeeze()).numpy()
self.assertLessEqual(norm, 0.25)

def test_attack_masked_nontargeted(self) -> None:
model = BasicModel()
input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]])
mask = torch.tensor([[1, 1, 0, 0, 0]])
adv = PGD(model)
perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4, mask=mask)
assertTensorAlmostEqual(
self,
perturbed_input,
[[2.0, -9.0, 9.0, 1.0, -3.0]],
delta=0.01,
mode="max",
)

def test_attack_masked_targeted(self) -> None:
model = BasicModel()
input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True)
mask = torch.tensor([[1, 1, 1, 0]])
adv = PGD(model)
perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True, mask=mask)
assertTensorAlmostEqual(
self,
perturbed_input,
[[9.0, 10.0, -6.0, -1.0]],
delta=0.01,
mode="max",
)

def test_attack_masked_multiinput(self) -> None:
model = BasicModel2()
input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True)
input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True)
mask1 = torch.tensor([[1, 1], [0, 0]])
mask2 = torch.tensor([[0, 1], [0, 1]])
adv = PGD(model)
perturbed_input = adv.perturb(
(input1, input2), 0.25, 0.1, 3, 0, norm="L2", mask=(mask1, mask2)
)
answer = ([[3.75, -1.0], [3.0, 10.0]], [[2.0, -5.0], [-2.0, 1.0]])
for i in range(len(perturbed_input)):
assertTensorAlmostEqual(
self,
perturbed_input[i],
answer[i],
delta=0.01,
mode="max",
)

def test_attack_masked_random_start(self) -> None:
model = BasicModel()
input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]])
mask = torch.tensor([[1, 0, 1, 0, 1]])
adv = PGD(model)
perturbed_input = adv.perturb(
input, 0.25, 0.1, 0, 4, random_start=True, mask=mask
)
assertTensorAlmostEqual(
self,
perturbed_input,
[[2.0, -9.0, 9.0, 1.0, -3.0]],
delta=0.25,
mode="max",
)
perturbed_input = adv.perturb(
input, 0.25, 0.1, 0, 4, norm="L2", random_start=True, mask=mask
)
norm = torch.norm((perturbed_input - input).squeeze()).numpy()
self.assertLessEqual(norm, 0.25)

def test_attack_masked_3dimensional_input(self) -> None:
model = BasicModel()
input = torch.tensor(
[[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True
)
mask = torch.tensor([[[1, 0], [0, 1]], [[1, 0], [1, 1]]])
adv = PGD(model)
perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1), mask=mask)
assertTensorAlmostEqual(
self,
perturbed_input,
[[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]],
delta=0.01,
mode="max",
)

def test_attack_masked_loss_defined(self) -> None:
model = BasicModel_MultiLayer()
add_input = torch.tensor([[-1.0, 2.0, 2.0]])
input = torch.tensor([[1.0, 6.0, -3.0]])
mask = torch.tensor([[0, 1, 0]])
labels = torch.tensor([0])
loss_func = CrossEntropyLoss(reduction="none")
adv = PGD(model, loss_func)
perturbed_input = adv.perturb(
input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,), mask=mask
)
assertTensorAlmostEqual(
self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max"
)