-
-
Notifications
You must be signed in to change notification settings - Fork 620
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add MutualInformation Metric (#3230)
* add MutualInformationMetric * update test for MutualInformation metric * format code for MutualInformation Metric * update test for MutualInformation metric * update test * update docstring * fix device compatibility * fix test_accumulator_device for MutualInformation metric * update doc * modify docstring * modify formula of docstring * update formula of docstring * update formula of docstring * remove unused import * add reference * commonalize redundant code * modify decorator * add a comment * fix decorator
- Loading branch information
Showing
5 changed files
with
247 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import torch | ||
|
||
from ignite.exceptions import NotComputableError | ||
from ignite.metrics import Entropy | ||
from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce | ||
|
||
__all__ = ["MutualInformation"] | ||
|
||
|
||
class MutualInformation(Entropy): | ||
r"""Calculates the `mutual information <https://en.wikipedia.org/wiki/Mutual_information>`_ | ||
between input :math:`X` and prediction :math:`Y`. | ||
.. math:: | ||
\begin{align*} | ||
I(X;Y) &= H(Y) - H(Y|X) = H \left( \frac{1}{N}\sum_{i=1}^N \hat{\mathbf{p}}_i \right) | ||
- \frac{1}{N}\sum_{i=1}^N H(\hat{\mathbf{p}}_i), \\ | ||
H(\mathbf{p}) &= -\sum_{c=1}^C p_c \log p_c. | ||
\end{align*} | ||
where :math:`\hat{\mathbf{p}}_i` is the prediction probability vector for :math:`i`-th input, | ||
and :math:`H(\mathbf{p})` is the entropy of :math:`\mathbf{p}`. | ||
Intuitively, this metric measures how well input data are clustered by classes in the feature space [1]. | ||
[1] https://proceedings.mlr.press/v70/hu17b.html | ||
- ``update`` must receive output of the form ``(y_pred, y)`` while ``y`` is not used in this metric. | ||
- ``y_pred`` is expected to be the unnormalized logits for each class. :math:`(B, C)` (classification) | ||
or :math:`(B, C, ...)` (e.g., image segmentation) shapes are allowed. | ||
Args: | ||
output_transform: a callable that is used to transform the | ||
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the | ||
form expected by the metric. This can be useful if, for example, you have a multi-output model and | ||
you want to compute the metric with respect to one of the outputs. | ||
By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. | ||
device: specifies which device updates are accumulated on. Setting the | ||
metric's device to be the same as your ``update`` arguments ensures the ``update`` method is | ||
non-blocking. By default, CPU. | ||
Examples: | ||
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. | ||
The output of the engine's ``process_function`` needs to be in the format of | ||
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added | ||
to the metric to transform the output into the form expected by the metric. | ||
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. | ||
.. include:: defaults.rst | ||
:start-after: :orphan: | ||
.. testcode:: | ||
metric = MutualInformation() | ||
metric.attach(default_evaluator, 'mutual_information') | ||
y_true = torch.tensor([0, 1, 2]) # not considered in the MutualInformation metric. | ||
y_pred = torch.tensor([ | ||
[ 0.0000, 0.6931, 1.0986], | ||
[ 1.3863, 1.6094, 1.6094], | ||
[ 0.0000, -2.3026, -2.3026] | ||
]) | ||
state = default_evaluator.run([[y_pred, y_true]]) | ||
print(state.metrics['mutual_information']) | ||
.. testoutput:: | ||
0.18599730730056763 | ||
""" | ||
|
||
_state_dict_all_req_keys = ("_sum_of_probabilities",) | ||
|
||
@reinit__is_reduced | ||
def reset(self) -> None: | ||
super().reset() | ||
self._sum_of_probabilities = torch.tensor(0.0, device=self._device) | ||
|
||
def _update(self, prob: torch.Tensor, log_prob: torch.Tensor) -> None: | ||
super()._update(prob, log_prob) | ||
# We can't use += below as _sum_of_probabilities can be a scalar and prob.sum(dim=0) is a vector | ||
self._sum_of_probabilities = self._sum_of_probabilities + prob.sum(dim=0).to(self._device) | ||
|
||
@sync_all_reduce("_sum_of_probabilities", "_sum_of_entropies", "_num_examples") | ||
def compute(self) -> float: | ||
n = self._num_examples | ||
if n == 0: | ||
raise NotComputableError("MutualInformation must have at least one example before it can be computed.") | ||
|
||
marginal_prob = self._sum_of_probabilities / n | ||
marginal_ent = -(marginal_prob * torch.log(marginal_prob)).sum() | ||
conditional_ent = self._sum_of_entropies / n | ||
mi = marginal_ent - conditional_ent | ||
mi = torch.clamp(mi, min=0.0) # mutual information cannot be negative | ||
return float(mi.item()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from scipy.special import softmax | ||
from scipy.stats import entropy | ||
from torch import Tensor | ||
|
||
import ignite.distributed as idist | ||
|
||
from ignite.engine import Engine | ||
from ignite.exceptions import NotComputableError | ||
from ignite.metrics import MutualInformation | ||
|
||
|
||
def np_mutual_information(np_y_pred: np.ndarray) -> float: | ||
prob = softmax(np_y_pred, axis=1) | ||
marginal_ent = entropy(np.mean(prob, axis=0)) | ||
conditional_ent = np.mean(entropy(prob, axis=1)) | ||
return max(0.0, marginal_ent - conditional_ent) | ||
|
||
|
||
def test_zero_sample(): | ||
mi = MutualInformation() | ||
with pytest.raises( | ||
NotComputableError, match=r"MutualInformation must have at least one example before it can be computed" | ||
): | ||
mi.compute() | ||
|
||
|
||
def test_invalid_shape(): | ||
mi = MutualInformation() | ||
y_pred = torch.randn(10).float() | ||
with pytest.raises(ValueError, match=r"y_pred must be in the shape of \(B, C\) or \(B, C, ...\), got"): | ||
mi.update((y_pred, None)) | ||
|
||
|
||
@pytest.fixture(params=list(range(4))) | ||
def test_case(request): | ||
return [ | ||
(torch.randn((100, 10)).float(), torch.randint(0, 10, size=[100]), 1), | ||
(torch.rand((100, 500)).float(), torch.randint(0, 500, size=[100]), 1), | ||
# updated batches | ||
(torch.normal(0.0, 5.0, size=(100, 10)).float(), torch.randint(0, 10, size=[100]), 16), | ||
(torch.normal(5.0, 3.0, size=(100, 200)).float(), torch.randint(0, 200, size=[100]), 16), | ||
# image segmentation | ||
(torch.randn((100, 5, 32, 32)).float(), torch.randint(0, 5, size=(100, 32, 32)), 16), | ||
(torch.randn((100, 5, 224, 224)).float(), torch.randint(0, 5, size=(100, 224, 224)), 16), | ||
][request.param] | ||
|
||
|
||
@pytest.mark.parametrize("n_times", range(5)) | ||
def test_compute(n_times, test_case: Tuple[Tensor, Tensor, int]): | ||
mi = MutualInformation() | ||
|
||
y_pred, y, batch_size = test_case | ||
|
||
mi.reset() | ||
if batch_size > 1: | ||
n_iters = y.shape[0] // batch_size + 1 | ||
for i in range(n_iters): | ||
idx = i * batch_size | ||
mi.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) | ||
else: | ||
mi.update((y_pred, y)) | ||
|
||
np_res = np_mutual_information(y_pred.numpy()) | ||
res = mi.compute() | ||
|
||
assert isinstance(res, float) | ||
assert pytest.approx(np_res, rel=1e-4) == res | ||
|
||
|
||
def test_accumulator_detached(): | ||
mi = MutualInformation() | ||
|
||
y_pred = torch.tensor([[2.0, 3.0], [-2.0, -1.0]], requires_grad=True) | ||
y = torch.zeros(2) | ||
mi.update((y_pred, y)) | ||
|
||
assert not mi._sum_of_probabilities.requires_grad | ||
|
||
|
||
@pytest.mark.usefixtures("distributed") | ||
class TestDistributed: | ||
def test_integration(self): | ||
tol = 1e-4 | ||
n_iters = 100 | ||
batch_size = 10 | ||
n_cls = 50 | ||
device = idist.device() | ||
rank = idist.get_rank() | ||
torch.manual_seed(12 + rank) | ||
|
||
metric_devices = [torch.device("cpu")] | ||
if device.type != "xla": | ||
metric_devices.append(device) | ||
|
||
for metric_device in metric_devices: | ||
y_true = torch.randint(0, n_cls, size=[n_iters * batch_size], dtype=torch.long).to(device) | ||
y_preds = torch.normal(0.0, 3.0, size=(n_iters * batch_size, n_cls), dtype=torch.float).to(device) | ||
|
||
engine = Engine( | ||
lambda e, i: ( | ||
y_preds[i * batch_size : (i + 1) * batch_size], | ||
y_true[i * batch_size : (i + 1) * batch_size], | ||
) | ||
) | ||
|
||
m = MutualInformation(device=metric_device) | ||
m.attach(engine, "mutual_information") | ||
|
||
data = list(range(n_iters)) | ||
engine.run(data=data, max_epochs=1) | ||
|
||
y_preds = idist.all_gather(y_preds) | ||
y_true = idist.all_gather(y_true) | ||
|
||
assert "mutual_information" in engine.state.metrics | ||
res = engine.state.metrics["mutual_information"] | ||
|
||
true_res = np_mutual_information(y_preds.cpu().numpy()) | ||
|
||
assert pytest.approx(true_res, rel=tol) == res | ||
|
||
def test_accumulator_device(self): | ||
device = idist.device() | ||
metric_devices = [torch.device("cpu")] | ||
if device.type != "xla": | ||
metric_devices.append(device) | ||
for metric_device in metric_devices: | ||
mi = MutualInformation(device=metric_device) | ||
|
||
devices = (mi._device, mi._sum_of_probabilities.device) | ||
for dev in devices: | ||
assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" | ||
|
||
y_pred = torch.tensor([[2.0, 3.0], [-2.0, -1.0]], requires_grad=True) | ||
y = torch.zeros(2) | ||
mi.update((y_pred, y)) | ||
|
||
devices = (mi._device, mi._sum_of_probabilities.device) | ||
for dev in devices: | ||
assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" |