A library implementing the Secp256k1
elliptic curve natively in pure Crystal.
Secp256k1
is the elliptic curve used in the public-private-key cryptography required by Bitcoin
, Ethereum
, and Polkadot
.
This library allows for:
- providing a
Secp256k1
cryptographic context, seeSecp256k1::Context
- managing
Secp256k1
signatures and verification, seeSecp256k1::Signature
- managing private-public keypairs, see
Secp256k1::Key
- generating public keys, see
Secp256k1::Point
- generating private keys, see
Secp256k1::Num
Add the Secp256k1
library to your shard.yml
dependencies:
secp256k1:
github: q9f/secp256k1.cr
version: "~> 0.5"
Import and expose the Secp256k1
module.
require "secp256k1"
This library exposes the following modules and classes (in logical order):
Secp256k1
: necessary constants and data structures, including:Secp256k1::Num
: for managing big numerics (private keys)Secp256k1::Point
: for handling of elliptic curve points (public keys)Secp256k1::Key
: for managing private-public keypairs (accounts)Secp256k1::Signature
: for handling ECDSA signatures (r, s, v)
Secp256k1::Context
: providing a cryptographic context for signing and verificationSecp256k1::Curve
: the entire core mathematics behind the elliptic curve cryptographySecp256k1::Util
: binding of various hashing algorithms for convenience
Basic usage:
# generates a new, random keypair
key = Secp256k1::Key.new
# => #<Secp256k1::Key:0x7fad7235aee0
# @private_key=#<Secp256k1::Num:0x7fad7235d300
# @hex="3ccf84820c20d5e8c536ba84c52ba410375b29b1812b5f7e722445c969a0fb30",
# @dec=27505422793993207218034260454067205887515304192802142316084292370834437241648,
# @bin=Bytes[60, 207, 132, 130, 12, 32, 213, 232, 197, 54, 186, 132, 197, 43, 164, 16, 55, 91, 41, 177, 129, 43, 95, 126, 114, 36, 69, 201, 105, 160, 251, 48]>,
# @public_key=#<Secp256k1::Point:0x7fad7235ad20
# @x=#<Secp256k1::Num:0x7fad69294ec0
# @hex="cd4a8712ee6efc15b5abe37c0dbfa979d89c427d3fe24b076008decefe94dba2",
# @dec=92855812888509048668847240903552964511053624688683992093822247249407942908834,
# @bin=Bytes[205, 74, 135, 18, 238, 110, 252, 21, 181, 171, 227, 124, 13, 191, 169, 121, 216, 156, 66, 125, 63, 226, 75, 7, 96, 8, 222, 206, 254, 148, 219, 162]>,
# @y=#<Secp256k1::Num:0x7fad69294e80
# @hex="81363d298e4a40ebcb13f1afa85a0b94b967f243ee59a59010cb5deaf0d7b66c",
# @dec=58444189335609256006902338825877424261513225250255958585656342678587884156524,
# @bin=Bytes[129, 54, 61, 41, 142, 74, 64, 235, 203, 19, 241, 175, 168, 90, 11, 148, 185, 103, 242, 67, 238, 89, 165, 144, 16, 203, 93, 234, 240, 215, 182, 108]>>>
# gets the private key
key.private_hex
# => "3ccf84820c20d5e8c536ba84c52ba410375b29b1812b5f7e722445c969a0fb30"
# gets the compressed public key with prefix
key.public_hex_compressed
# => "02cd4a8712ee6efc15b5abe37c0dbfa979d89c427d3fe24b076008decefe94dba2"
Signature generation and verification:
# sign a message with a private key
ctx = Secp256k1::Context.new
priv = Secp256k1::Num.new "1f0c122d41ff536b19bfd83537c0dfc290e45cd3c375a43237c8b8fff7ac8af7"
key = Secp256k1::Key.new priv
hash = Secp256k1::Util.sha256 "Henlo, Wordl"
sig = ctx.sign key, hash
# => #<Secp256k1::Signature:0x7f5332e1d9c0
# @r=#<Secp256k1::Num:0x7f5332decac0
# @hex="c4079db44240b7afe94985c69fc89602e33629fd9b8623d711c30ce6378b33df",
# @dec=88666774685717741514025410921892109286073075687452443491001272268566542627807,
# @bin=Bytes[196, 7, 157, 180, 66, 64, 183, 175, 233, 73, 133, 198, 159, 200, 150, 2, 227, 54, 41, 253, 155, 134, 35, 215, 17, 195, 12, 230, 55, 139, 51, 223]>,
# @s=#<Secp256k1::Num:0x7f5332deca80
# @hex="6842c1b63c94bdb8e4f5ae88fb65f7a98b77b197c8323004fb47ef57fab29053",
# @dec=47158485109070227797431103290229472044663017260590156038384319099500326195283,
# @bin=Bytes[104, 66, 193, 182, 60, 148, 189, 184, 228, 245, 174, 136, 251, 101, 247, 169, 139, 119, 177, 151, 200, 50, 48, 4, 251, 71, 239, 87, 250, 178, 144, 83]>,
# @v=#<Secp256k1::Num:0x7f5332deca40
# @hex="00",
# @dec=0,
# @bin=Bytes[0]>>
# verify a signature with a public key
r = Secp256k1::Num.new "c4079db44240b7afe94985c69fc89602e33629fd9b8623d711c30ce6378b33df"
s = Secp256k1::Num.new "6842c1b63c94bdb8e4f5ae88fb65f7a98b77b197c8323004fb47ef57fab29053"
v = Secp256k1::Num.new "00"
sig = Secp256k1::Signature.new r, s, v
hash = Secp256k1::Util.sha256 "Henlo, Wordl"
publ = Secp256k1::Point.new "0416008a369439f1a8a75cf974860bed5b10180518d6b1dd3ac847f423fd375d6aa29474394f0cd79d2ea543507d069e97339284f01bdbfd27392daec0ec553816"
ctx.verify sig, hash, publ
# => true
There are example scripts for generating Bitcoin
and Ethereum
accounts in src/bitcoin.cr
and src/ethereum.cr
.
The full library documentation can be found here: q9f.github.io/secp256k1.cr
Generate a local copy with:
crystal docs
The library is entirely specified through tests in ./spec
; run:
crystal spec --verbose
Private keys are just scalars (Secp256k1::Num
) and public keys are points (Secp256k1::Point
) with x
and y
coordinates.
Bitcoin public keys can be uncompressed p|x|y
or compressed p|x
. both come with a prefix p
which is useless for uncompressed keys but necessary for compressed keys to recover the y
coordinate on the Secp256k1
elliptic curve field.
Ethereum public keys are uncompressed x|y
without any prefix. The last 20 bytes slice of the y
coordinate is actually used as address without any checksum. A checksum was later added in EIP-55 using a keccak256
hash and indicating character capitalization.
Neither Bitcoin nor Ethereum allow for recovering public keys from an address unless there exists a transaction with a valid signature on the blockchain.
Note: this library should not be used in production without proper auditing. It should be considered slow and insecure.
- This library is not constant time and might be subject to side-channel attacks. (#4)
- This library does unnecessary big-integer math and should someday rather correctly implement the
Secp256k1
prime field (#5) - This library is slow in recovering signatures. Future versions should respect the recovery ID to quickly identify the correct public key from a signature.
Found any other issue? Report it: github.com/q9f/secp256k1.cr/issues
Create a pull request, and make sure tests and linter pass.
This pure crystal implementation is based on the python implementation wobine/blackboard101 which is also used as reference to write tests against. It's a complete rewrite of the abandoned packetzero/bitcoinutils for educational purposes.
Honerable mention for the bitcoin wiki and the ethereum stackexchange for providing so many in-depth resources that supported this project in reimplementing everything.
License: Apache License v2.0