Investment Portfolio Builder is a Python library that provides portfolio optimization methods, including classical mean-variance optimization techniques, Black-Litterman allocation, and more recent developments like shrinkage and Hierarchical Risk Parity. It is both extensive and easily extensible, making it useful for casual investors and professionals looking for a prototyping tool. Whether you are a fundamentals-oriented investor or an algorithmic trader, Investment Portfolio Builder can help you combine your alpha sources in a risk-efficient way.
Here is an example on real life stock data, demonstrating how easy it is to find the long-only portfolio that maximises the Sharpe ratio (a measure of risk-adjusted returns).
import pandas as pd
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
# Read in price data
df = pd.read_csv("tests/resources/stock_prices.csv", parse_dates=True, index_col="date")
# Calculate expected returns and sample covariance
mu = expected_returns.mean_historical_return(df)
S = risk_models.sample_cov(df)
# Optimize for maximal Sharpe ratio
ef = EfficientFrontier(mu, S)
raw_weights = ef.max_sharpe()
cleaned_weights = ef.clean_weights()
ef.save_weights_to_file("weights.csv") # saves to file
print(cleaned_weights)
ef.portfolio_performance(verbose=True)
This outputs the following weights:
{'GOOG': 0.03835,
'AAPL': 0.0689,
'FB': 0.20603,
'BABA': 0.07315,
'AMZN': 0.04033,
'GE': 0.0,
'AMD': 0.0,
'WMT': 0.0,
'BAC': 0.0,
'GM': 0.0,
'T': 0.0,
'UAA': 0.0,
'SHLD': 0.0,
'XOM': 0.0,
'RRC': 0.0,
'BBY': 0.01324,
'MA': 0.35349,
'PFE': 0.1957,
'JPM': 0.0,
'SBUX': 0.01082}
Expected annual return: 30.5%
Annual volatility: 22.2%
Sharpe Ratio: 1.28
- Mean historical returns:
- the simplest and most common approach, which states that the expected return of each asset is equal to the mean of its historical returns.
- easily interpretable and very intuitive
- Exponentially weighted mean historical returns:
- similar to mean historical returns, except it gives exponentially more weight to recent prices
- it is likely the case that an asset's most recent returns hold more weight than returns from 10 years ago when it comes to estimating future returns.
- Capital Asset # Model (CAPM):
- a simple model to predict returns based on the beta to the market
- this is used all over finance!