Skip to content

recluzegeek/deepscan-api

Repository files navigation

DeepScan API

DeepScan API is a FastAPI-based service that processes videos to detect deepfake content using deep learning models. It provides real-time analysis and visualization of the detection process.

Features

  • Deep learning-based deepfake detection
  • GradCAM visualization for model interpretability
  • Efficient frame processing and storage
  • REST API endpoints for video processing
  • Integration with Laravel backend
  • Configurable settings via YAML

System Requirements

  • Python 3.8+
  • CUDA-capable GPU (recommended)
  • Storage space for processed frames

Installation

  1. Clone the repository:
git clone https://github.com/recluzegeek/deepscan-api.git

cd deepscan-api
  1. Create and activate a virtual environment:
python -m venv deepscan-api-venv
source deepscan-api-venv/bin/activate

OR

.\deepscan-api-venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Configure settings:
cp config/settings.yaml.example config/settings.yaml

Edit the settings.yaml file to configure the API host, port, and other parameters.

Project Structure

deepscan-api/
├── config/
│ ├── settings.example.yaml
│ └── settings.yaml
├── utils/
│ ├── model_manager.py
│ ├── database.py
│ ├── models.py
│ └── classification.py
├── services/
│ └── video_service.py
├── routers/
│ └── video_router.py
├── models/
│ └── weights/
├── requirements.txt
└── README.md

Usage

  1. Run the API:
fastapi run main.py --reload --host 0.0.0.0 --port 8000
  1. API Endpoints:
  • POST /upload: Process video frames for deepfake detection

API Documentation

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc

License

This project is licensed under the MIT License.

About

Inference API for DeepScan Web made with FastAPI

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published