DeepScan API is a FastAPI-based service that processes videos to detect deepfake content using deep learning models. It provides real-time analysis and visualization of the detection process.
- Deep learning-based deepfake detection
- GradCAM visualization for model interpretability
- Efficient frame processing and storage
- REST API endpoints for video processing
- Integration with Laravel backend
- Configurable settings via YAML
- Python 3.8+
- CUDA-capable GPU (recommended)
- Storage space for processed frames
- Clone the repository:
git clone https://github.com/recluzegeek/deepscan-api.git
cd deepscan-api
- Create and activate a virtual environment:
python -m venv deepscan-api-venv
source deepscan-api-venv/bin/activate
OR
.\deepscan-api-venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Configure settings:
cp config/settings.yaml.example config/settings.yaml
Edit the settings.yaml file to configure the API host, port, and other parameters.
deepscan-api/
├── config/
│ ├── settings.example.yaml
│ └── settings.yaml
├── utils/
│ ├── model_manager.py
│ ├── database.py
│ ├── models.py
│ └── classification.py
├── services/
│ └── video_service.py
├── routers/
│ └── video_router.py
├── models/
│ └── weights/
├── requirements.txt
└── README.md
- Run the API:
fastapi run main.py --reload --host 0.0.0.0 --port 8000
- API Endpoints:
- POST
/upload
: Process video frames for deepfake detection
- Swagger UI:
http://localhost:8000/docs
- ReDoc:
http://localhost:8000/redoc
This project is licensed under the MIT License.