Skip to content

This work discusses how high resolution satellite images are classified into various classes like cloud, vegetation, water and miscellaneous, using feed forward neural network. Open source python libraries like GDAL and keras were used in this work. This work is generic and can be used for satellite images of any resolution, but with MX band sen…

License

Notifications You must be signed in to change notification settings

rohitgandikota/Land-Use-Land-Cover-Classification-of-Satellite-Images-using-Deep-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Land-Use-Land-Cover-Classification-of-Satellite-Images-using-Deep-Learning

This work discusses how high resolution satellite images are classified into various classes like cloud, vegetation, water and miscellaneous, using feed forward neural network. Open source python libraries like GDAL and keras were used in this work. This work is generic and can be used for satellite images of any resolution, but with MX band sensors.

Intially, the raw extracted satellite image has lots of distortions like gemetrical, radiometric etc. We process these images to correct the distortion to the most extent. For this end, we use the code DN2TOA.py.

After generating the TOA images, we used QGIS software to manually clip the pixels from each class and store them as training data. This was the most time consuming process. These clipped pixels have 4 band values per sample. These are the input dimensions and are needed to classified into 4 classes.

In the code Train_LULC.py, one can find the architecture of the model used for training. We were able to achieve the following accuracies:

  1. Training: 99.87 % 2.Validation: 98.78 %

The code for testing a TOA processed image can be found in Test_MX.py

About

This work discusses how high resolution satellite images are classified into various classes like cloud, vegetation, water and miscellaneous, using feed forward neural network. Open source python libraries like GDAL and keras were used in this work. This work is generic and can be used for satellite images of any resolution, but with MX band sen…

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages