-
Notifications
You must be signed in to change notification settings - Fork 13.3k
const fn can cause infinite recursion in rustc #31364
New issue
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
Comments
What about short-circuit behaviour of && and ||, shouldn't it allow you to get #![feature(const_fn)]
const fn a(i: bool) -> bool { i || a(true) }
fn main() {
println!("{}", a(false));
} |
short circuiting has its own bug(#29608) and we're delaying it until we have a single constant evaluator based on MIR, since it'll create some confusion between the two constant evaluators we currently have |
Why doesn't the recursion limit cover this? |
@durka Best guess: Ran out of stack before hitting the recursion limit. This could happen if the function call chain is long enough during the constant evaluator working on evaluating these recursive functions. |
Replace all const evaluation with miri * error reporting in constants prints a stacktrace through all called const fns * Trivial constant propagation and folding in MIR (always active, irrelevant of the optimization level) * can now use floating constants in patterns (previously only floating point literals were allowed) * the future compat lint is still produced for both cases * can index into constant arrays during const eval (previously feature gated) * can create a constant union value with field `a` and read from field `b` * can dereference references into constants * can create references inside constants (`const X: &u32 = &22`) * Tuple struct constructors can be used in constants * regression in const eval errors spans (some of these need improvements in mir debug info) * can cast floats to ints and vice versa (in constants, and even nan/inf constants) * Mir dump prints false/true instead of 0u8/1u8 * `1i8 >> [8][0]` does not lint about exceeding bitshifts anymore. * Needs const propagation across projections * `foo[I]` produces a const eval lint if `foo: [T; N]` and `N < I` * Essentially all builtin panics produce lints if they can be statically proven to trigger at runtime. This is on a best effort basis, so there might be some complex cases that don't trigger. (The runtime panic stays there, irrelevant of whether the lint is produced or not) fixes #34997 (stack overflow with many constants) fixes #25574 (deref byte strings in patterns) fixes #27918 (broken mir ICE) fixes #46114 (ICE on struct constructors in patterns) fixes #37448 (`SomeStruct { foo } as SomeStruct`) fixes #43754 (`return` in const fn) fixes #41898 (tuple struct constructors) fixes #31364 (infinite recursion with const fn, fixed by miri's recursion limit) closes #29947 (const indexing stabilization) r? @eddyb
Replace all const evaluation with miri * error reporting in constants prints a stacktrace through all called const fns * Trivial constant propagation and folding in MIR (always active, irrelevant of the optimization level) * can now use floating constants in patterns (previously only floating point literals were allowed) * the future compat lint is still produced for both cases * can index into constant arrays during const eval (previously feature gated) * can create a constant union value with field `a` and read from field `b` * can dereference references into constants * can create references inside constants (`const X: &u32 = &22`) * Tuple struct constructors can be used in constants * regression in const eval errors spans (some of these need improvements in mir debug info) * can cast floats to ints and vice versa (in constants, and even nan/inf constants) * Mir dump prints false/true instead of 0u8/1u8 * `1i8 >> [8][0]` does not lint about exceeding bitshifts anymore. * Needs const propagation across projections * `foo[I]` produces a const eval lint if `foo: [T; N]` and `N < I` * Essentially all builtin panics produce lints if they can be statically proven to trigger at runtime. This is on a best effort basis, so there might be some complex cases that don't trigger. (The runtime panic stays there, irrelevant of whether the lint is produced or not) fixes #34997 (stack overflow with many constants) fixes #25574 (deref byte strings in patterns) fixes #27918 (broken mir ICE) fixes #46114 (ICE on struct constructors in patterns) fixes #37448 (`SomeStruct { foo } as SomeStruct`) fixes #43754 (`return` in const fn) fixes #41898 (tuple struct constructors) fixes #31364 (infinite recursion with const fn, fixed by miri's recursion limit) closes #29947 (const indexing stabilization) fixes #45044 (pattern matching repeat expressions) r? @eddyb
Replace all const evaluation with miri * error reporting in constants prints a stacktrace through all called const fns * Trivial constant propagation and folding in MIR (always active, irrelevant of the optimization level) * can now use floating constants in patterns (previously only floating point literals were allowed) * the future compat lint is still produced for both cases * can index into constant arrays during const eval (previously feature gated) * can create a constant union value with field `a` and read from field `b` * can dereference references into constants * can create references inside constants (`const X: &u32 = &22`) * Tuple struct constructors can be used in constants * regression in const eval errors spans (some of these need improvements in mir debug info) * can cast floats to ints and vice versa (in constants, and even nan/inf constants) * Mir dump prints false/true instead of 0u8/1u8 * `1i8 >> [8][0]` does not lint about exceeding bitshifts anymore. * Needs const propagation across projections * `foo[I]` produces a const eval lint if `foo: [T; N]` and `N < I` * Essentially all builtin panics produce lints if they can be statically proven to trigger at runtime. This is on a best effort basis, so there might be some complex cases that don't trigger. (The runtime panic stays there, irrelevant of whether the lint is produced or not) * can use `union`s to implement `transmute` for `Copy` types in constants without a feature gate. With all the greatness and nasal demons that come with this. fixes #34997 (stack overflow with many constants) fixes #25574 (deref byte strings in patterns) fixes #27918 (broken mir ICE) fixes #46114 (ICE on struct constructors in patterns) fixes #37448 (`SomeStruct { foo } as SomeStruct`) fixes #43754 (`return` in const fn) fixes #41898 (tuple struct constructors) fixes #31364 (infinite recursion with const fn, fixed by miri's recursion limit) closes #29947 (const indexing stabilization) fixes #45044 (pattern matching repeat expressions) fixes #47971 (ICE on const fn + references) r? @eddyb
Replace all const evaluation with miri * error reporting in constants prints a stacktrace through all called const fns * Trivial constant propagation and folding in MIR (always active, irrelevant of the optimization level) * can now use floating constants in patterns (previously only floating point literals were allowed) * the future compat lint is still produced for both cases * can index into constant arrays during const eval (previously feature gated) * can create a constant union value with field `a` and read from field `b` * can dereference references into constants * can create references inside constants (`const X: &u32 = &22`) * Tuple struct constructors can be used in constants * regression in const eval errors spans (some of these need improvements in mir debug info) * can cast floats to ints and vice versa (in constants, and even nan/inf constants) * Mir dump prints false/true instead of 0u8/1u8 * `1i8 >> [8][0]` does not lint about exceeding bitshifts anymore. * Needs const propagation across projections * `foo[I]` produces a const eval lint if `foo: [T; N]` and `N < I` * Essentially all builtin panics produce lints if they can be statically proven to trigger at runtime. This is on a best effort basis, so there might be some complex cases that don't trigger. (The runtime panic stays there, irrelevant of whether the lint is produced or not) * can use `union`s to implement `transmute` for `Copy` types in constants without a feature gate. With all the greatness and nasal demons that come with this. * can convert integers to `&'static T` in constants (useful for embedded) fixes #34997 (stack overflow with many constants) fixes #25574 (deref byte strings in patterns) fixes #27918 (broken mir ICE) fixes #46114 (ICE on struct constructors in patterns) fixes #37448 (`SomeStruct { foo } as SomeStruct`) fixes #43754 (`return` in const fn) fixes #41898 (tuple struct constructors) fixes #31364 (infinite recursion with const fn, fixed by miri's recursion limit) closes #29947 (const indexing stabilization) fixes #45044 (pattern matching repeat expressions) fixes #47971 (ICE on const fn + references) fixes #48081 (ICE on cyclic assoc const error) fixes #48746 (nonhelpful error message with unions) r? @eddyb even though 1k loc are added in tests, this PR reduces the loc in this repository by 700
Replace all const evaluation with miri * error reporting in constants prints a stacktrace through all called const fns * Trivial constant propagation and folding in MIR (always active, irrelevant of the optimization level) * can now use floating constants in patterns (previously only floating point literals were allowed) * the future compat lint is still produced for both cases * can index into constant arrays during const eval (previously feature gated) * can create a constant union value with field `a` and read from field `b` * can dereference references into constants * can create references inside constants (`const X: &u32 = &22`) * Tuple struct constructors can be used in constants * regression in const eval errors spans (some of these need improvements in mir debug info) * can cast floats to ints and vice versa (in constants, and even nan/inf constants) * Mir dump prints false/true instead of 0u8/1u8 * `1i8 >> [8][0]` does not lint about exceeding bitshifts anymore. * Needs const propagation across projections * `foo[I]` produces a const eval lint if `foo: [T; N]` and `N < I` * Essentially all builtin panics produce lints if they can be statically proven to trigger at runtime. This is on a best effort basis, so there might be some complex cases that don't trigger. (The runtime panic stays there, irrelevant of whether the lint is produced or not) * can use `union`s to implement `transmute` for `Copy` types in constants without a feature gate. With all the greatness and nasal demons that come with this. * can convert integers to `&'static T` in constants (useful for embedded) fixes #34997 (stack overflow with many constants) fixes #25574 (deref byte strings in patterns) fixes #27918 (broken mir ICE) fixes #46114 (ICE on struct constructors in patterns) fixes #37448 (`SomeStruct { foo } as SomeStruct`) fixes #43754 (`return` in const fn) fixes #41898 (tuple struct constructors) fixes #31364 (infinite recursion with const fn, fixed by miri's recursion limit) closes #29947 (const indexing stabilization) fixes #45044 (pattern matching repeat expressions) fixes #47971 (ICE on const fn + references) fixes #48081 (ICE on cyclic assoc const error) fixes #48746 (nonhelpful error message with unions) r? @eddyb even though 1k loc are added in tests, this PR reduces the loc in this repository by 700
The same problem happens in trans when using
static A: usize = a();
instead.Since we do not have constant conditionals, there's currently no way recursion ever makes sense.
The text was updated successfully, but these errors were encountered: