Skip to content

Deep recursion issues in the compiler #40161

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Closed
ghost opened this issue Feb 28, 2017 · 2 comments · Fixed by #55617
Closed

Deep recursion issues in the compiler #40161

ghost opened this issue Feb 28, 2017 · 2 comments · Fixed by #55617
Labels
C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC metabug Issues about issues themselves ("bugs about bugs")

Comments

@ghost
Copy link

ghost commented Feb 28, 2017

As suggested by @abonander, this is an issue to track deep recursion issues in the compiler.

@steveklabnik steveklabnik added the metabug Issues about issues themselves ("bugs about bugs") label Mar 1, 2017
@eddyb
Copy link
Member

eddyb commented Jun 8, 2017

cc #41884 as a potentially general solution.

@Mark-Simulacrum Mark-Simulacrum added the C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC label Jul 27, 2017
@varkor
Copy link
Member

varkor commented Feb 27, 2018

This issue is also relevant: #34844, and this: #32594.

bors added a commit that referenced this issue Nov 6, 2018
Prevent compiler stack overflow for deeply recursive code

I was unable to write a test that

1. runs in under 1s
2. overflows on my machine without this patch

The following reproduces the issue, but I don't think it's sensible to include a test that takes 30s to compile. We can now easily squash newly appearing overflows by the strategic insertion of calls to `ensure_sufficient_stack`.

```rust
// compile-pass

#![recursion_limit="1000000"]

macro_rules! chain {
    (EE $e:expr) => {$e.sin()};
    (RECURSE $i:ident $e:expr) => {chain!($i chain!($i chain!($i chain!($i $e))))};
    (Z $e:expr) => {chain!(RECURSE EE $e)};
    (Y $e:expr) => {chain!(RECURSE Z $e)};
    (X $e:expr) => {chain!(RECURSE Y $e)};
    (A $e:expr) => {chain!(RECURSE X $e)};
    (B $e:expr) => {chain!(RECURSE A $e)};
    (C $e:expr) => {chain!(RECURSE B $e)};
    // causes overflow on x86_64 linux
    // less than 1 second until overflow on test machine
    // after overflow has been fixed, takes 30s to compile :/
    (D $e:expr) => {chain!(RECURSE C $e)};
    (E $e:expr) => {chain!(RECURSE D $e)};
    (F $e:expr) => {chain!(RECURSE E $e)};
    // more than 10 seconds
    (G $e:expr) => {chain!(RECURSE F $e)};
    (H $e:expr) => {chain!(RECURSE G $e)};
    (I $e:expr) => {chain!(RECURSE H $e)};
    (J $e:expr) => {chain!(RECURSE I $e)};
    (K $e:expr) => {chain!(RECURSE J $e)};
    (L $e:expr) => {chain!(RECURSE L $e)};
}

fn main() {
    let x = chain!(D 42.0_f32);
}
```

fixes #55471
fixes #41884
fixes #40161
fixes #34844
fixes #32594

cc @alexcrichton @rust-lang/compiler

I looked at all code that checks the recursion limit and inserted stack growth calls where appropriate.
bors added a commit that referenced this issue Nov 13, 2018
Prevent compiler stack overflow for deeply recursive code

I was unable to write a test that

1. runs in under 1s
2. overflows on my machine without this patch

The following reproduces the issue, but I don't think it's sensible to include a test that takes 30s to compile. We can now easily squash newly appearing overflows by the strategic insertion of calls to `ensure_sufficient_stack`.

```rust
// compile-pass

#![recursion_limit="1000000"]

macro_rules! chain {
    (EE $e:expr) => {$e.sin()};
    (RECURSE $i:ident $e:expr) => {chain!($i chain!($i chain!($i chain!($i $e))))};
    (Z $e:expr) => {chain!(RECURSE EE $e)};
    (Y $e:expr) => {chain!(RECURSE Z $e)};
    (X $e:expr) => {chain!(RECURSE Y $e)};
    (A $e:expr) => {chain!(RECURSE X $e)};
    (B $e:expr) => {chain!(RECURSE A $e)};
    (C $e:expr) => {chain!(RECURSE B $e)};
    // causes overflow on x86_64 linux
    // less than 1 second until overflow on test machine
    // after overflow has been fixed, takes 30s to compile :/
    (D $e:expr) => {chain!(RECURSE C $e)};
    (E $e:expr) => {chain!(RECURSE D $e)};
    (F $e:expr) => {chain!(RECURSE E $e)};
    // more than 10 seconds
    (G $e:expr) => {chain!(RECURSE F $e)};
    (H $e:expr) => {chain!(RECURSE G $e)};
    (I $e:expr) => {chain!(RECURSE H $e)};
    (J $e:expr) => {chain!(RECURSE I $e)};
    (K $e:expr) => {chain!(RECURSE J $e)};
    (L $e:expr) => {chain!(RECURSE L $e)};
}

fn main() {
    let x = chain!(D 42.0_f32);
}
```

fixes #55471
fixes #41884
fixes #40161
fixes #34844
fixes #32594

cc @alexcrichton @rust-lang/compiler

I looked at all code that checks the recursion limit and inserted stack growth calls where appropriate.
Centril added a commit to Centril/rust that referenced this issue Mar 18, 2020
Prevent compiler stack overflow for deeply recursive code

I was unable to write a test that

1. runs in under 1s
2. overflows on my machine without this patch

The following reproduces the issue, but I don't think it's sensible to include a test that takes 30s to compile. We can now easily squash newly appearing overflows by the strategic insertion of calls to `ensure_sufficient_stack`.

```rust
// compile-pass

#![recursion_limit="1000000"]

macro_rules! chain {
    (EE $e:expr) => {$e.sin()};
    (RECURSE $i:ident $e:expr) => {chain!($i chain!($i chain!($i chain!($i $e))))};
    (Z $e:expr) => {chain!(RECURSE EE $e)};
    (Y $e:expr) => {chain!(RECURSE Z $e)};
    (X $e:expr) => {chain!(RECURSE Y $e)};
    (A $e:expr) => {chain!(RECURSE X $e)};
    (B $e:expr) => {chain!(RECURSE A $e)};
    (C $e:expr) => {chain!(RECURSE B $e)};
    // causes overflow on x86_64 linux
    // less than 1 second until overflow on test machine
    // after overflow has been fixed, takes 30s to compile :/
    (D $e:expr) => {chain!(RECURSE C $e)};
    (E $e:expr) => {chain!(RECURSE D $e)};
    (F $e:expr) => {chain!(RECURSE E $e)};
    // more than 10 seconds
    (G $e:expr) => {chain!(RECURSE F $e)};
    (H $e:expr) => {chain!(RECURSE G $e)};
    (I $e:expr) => {chain!(RECURSE H $e)};
    (J $e:expr) => {chain!(RECURSE I $e)};
    (K $e:expr) => {chain!(RECURSE J $e)};
    (L $e:expr) => {chain!(RECURSE L $e)};
}

fn main() {
    let x = chain!(D 42.0_f32);
}
```

fixes rust-lang#55471
fixes rust-lang#41884
fixes rust-lang#40161
fixes rust-lang#34844
fixes rust-lang#32594

cc @alexcrichton @rust-lang/compiler

I looked at all code that checks the recursion limit and inserted stack growth calls where appropriate.
@bors bors closed this as completed in 97f3eee May 7, 2020
# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC metabug Issues about issues themselves ("bugs about bugs")
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants