Skip to content

Masked face recognition focuses on identifying people using their facial features while they are wearing masks. We introduce benchmarks on face verification based on masked face images for the development of COVID-safe protocols in airports.

License

Notifications You must be signed in to change notification settings

sachith500/MaskedFaceRepresentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Masked Face Representation

Build Status

Masked face recognition focuses on identifying people using their facial features while they are wearing masks. We introduce benchmarks on face verification and facial attribution prediction based on masked face images corresponding to multiple published articles.

Data and Ethics

All models, code and research presented in this repo is provided for reproducibility purposes. Our work is intended for use for helping security-related applications while maintaining COVID-safe protocols (keep your mask on at airport security to maintain a lower chance of spreading COVID) and not for invading individual privacy. We invite researchers to consider the broader implications of perfecting state of the art result work in areas such as masked identification. We believe everyone has the right to their privacy and researchers should consider the broader implications of their work and potential for misuse.

The accuracy and performance of models released in this repo should be sufficient for health-related applications (such as safety protocols) but would not (we hope) be usable for tracking an individuals' movements.

If you are interested in using this work for COVID-Safety applications we are happy to consult on a pro bono basis.

Features

  • Masked face identification
    • Generate Synthetic masks to CelebA, Fei Face, georgia_tech, SoF, YoutubeFaces and LFW datasets
    • Apply synthetic mask to a face image
    • Apply synthetic masks to a folder of images
    • [DICTA2021] Regenerate results in the paper : Multi-Dataset Benchmarks for Masked Identification using Contrastive Representation Learning
      • Regenerate benchmark 1 results from the models
      • Regenerate benchmark 2 results from scores files
      • Regenerate benchmark 2 results from the models
  • Masked face privacy
    • Generate Synthetic masks to UTKFace dataset
    • Split the dataset with proper distribution among training, validation and test datasets
    • [AJCAI2021] Regenerate results in the paper : Does a Face Mask Protect my Privacy?: DeepLearning to Predict Protected Attributes fromMasked Face Images
      • Regenerate the overall accuracy for models
      • Regenerate the results of masked and unmasked faces

Masked face identification

Conference Venue: DICTA2021

Download the benchmark datasets

Dataset Name Website Instructions Download URL
celeba Large-scale CelebFaces Attributes (CelebA) Dataset Follow the downloading instructions https://drive.google.com/drive/folders/0B7EVK8r0v71pTUZsaXdaSnZBZzg
fei_face_frontal FEI Face Database Download both folders and merge into fei_face_frontal folder https://fei.edu.br/~cet/frontalimages_manuallyaligned_part1.zip https://fei.edu.br/~cet/frontalimages_manuallyaligned_part2.zip
fei_face_original FEI Face Database Download and merge all the folders into fei_face_original folder https://fei.edu.br/~cet/originalimages_part1.zip https://fei.edu.br/~cet/originalimages_part2.zip https://fei.edu.br/~cet/originalimages_part3.zip https://fei.edu.br/~cet/originalimages_part4.zip
georgia_tech Georgia Tech face database Download the zip and unzip into georgia_tech http://www.anefian.com/research/gt_db.zip
sof_original Specs on Faces (SoF) Dataset Download original images https://drive.google.com/file/d/1ufydwhMYtOhxgQuHs9SjERnkX0fXxorO/
youtube_faces YouTube Faces DB Follow the downloading instructions https://www.cs.tau.ac.il/~wolf/ytfaces/
lfw Labeled Faces in the Wild Download all images aligned with deep funnelling http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

Downloading instructions

celeba
  1. Go to the google drive link
  2. Go inside img_align_celeba_png folder
  3. Download img_align_celeba_png.7z001 - img_align_celeba_png.7z016 all files
  4. Combine them and unzip it using 7zip
  5. Unzip the file to celeba/images folder
  6. Download annotations identity_CelebA.txt from the following link https://drive.google.com/drive/u/1/folders/0B7EVK8r0v71pOC0wOVZlQnFfaGs?resourcekey=0-pEjrQoTrlbjZJO2UL8K_WQ
  7. Place annotations identity_CelebA.txt under celeba/
youtube_faces
  1. Fill the form by providing your name and email.
  2. Get the username and password to login to the provided website.
  3. Click on frame_images_DB then go to YouTube Faces(YTF) data set.
  4. Download YoutubeFaces.tar.gz
  5. Unzip under youtube_faces

Folder Structure after downloading the datasets

base_folder : Base folder for all the datasets

  • celeba
    • images
    • identity_CelebA.txt
  • fei_face_frontal
  • fei_face_original
  • georgia_tech
  • lfw
  • sof_original
  • youtube_faces

Generate Synthetic masks to benchmark datasets

Install python 3.6. Then run the following command to install the requirements.

pip install -r requirements.txt

To apply synthetic masks on the datasets

python generate_mask_to_datasets.py --base_folder ../base_folder --new_dataset_folder ../benchmark_dataset

Summary of the datasets for DICTA2021

Dataset Unmasked Identities/ Images Masked Identities/ Images
CelebA 10177/202,599 10174/197,499
FEI Face 200/1,177 200/1,177
Georgia Tech 50/750 50/750
SoF 93/1,443 90/1,393
YouTube Faces 1595/20,252 1589/19,960
LFW 5749/13,167 5718/13,138

Experiments

Our network architecture (Siamese Network Architecture)

Benchmark 1

Results

ImageNet VGGFace2 Proposed
Dataset VGG19 MobileNet SENET VGG16 ResNet50
fei_face_original 0.363 0.356 0.49 0.304 0.031
georgia_tech 0.323 0.416 0.483 0.431 0.097
sof_original 0.476 0.389 0.415 0.365 0.169
fei_face_frontal 0.357 0.171 0.424 0.143 0
youtube_faces 0.424 0.394 0.468 0.385 0.115
lfw 0.361 0.449 0.469 0.372 0.142
in_house_dataset 0.288 0.244 0.425 0.288 0.038

Regenerate benchmark 1 results

cd DICTA2021
python regenerate_benchmark_1_from_models.py --base_folder ../base_folder

Benchmark 2

Results

Dataset Exp1 CP1 CP2 FT1 FT2 FT3 Ensemble
fei_face_original 0.073 0.016 0.015 0.01 0.016 0.011 0.009
georgia_tech 0.207 0.041 0.055 0.06 0.059 0.058 0.048
sof_original 0.187 0.073 0.071 0.058 0.069 0.067 0.061
fei_face_frontal 0 0 0 0 0 0 0
youtube_faces 0.156 0.053 0.051 0.042 0.056 0.046 0.041
lfw 0.219 0.101 0.09 0.091 0.11 0.093 0.084
in_house_dataset 0.038 0.031 0.013 0.013 0.013 0.019 0.013

Regenerate benchmark 2 results

cd DICTA2021
python regenerate_experiment_2_results_from_models.py --base_folder ../base_folder

Overall benchmark: results of Exp1(trained on CelebA for 1015k steps) and Ensemble(trained on 4 datasets) on the synthetic unmasked-masked datasets generated

Exp1 (Celeb Only) Ensemble (4 datasets)
Dataset EER FRR100 EER FRR100
fei_face_original 0.089984 0.638723 0.008984 0.015968
georgia_tech 0.142884 0.93014 0.047976 0.245509
sof_original 0.195122 0.762745 0.061094 0.178431
fei_face_frontal 0.071429 0.2 0 0
youtube_faces 0.142902 0.904 0.040948 0.208
lfw 0.17788 0.976048 0.08387 0.229541
in_house_dataset 0.075 0.15 0.0125 0.025

Regenerate overall benchmark

cd DICTA2021
python regenerate_table_6_results_from_models.py --base_folder ../base_folder

FPR/TPR curve, for all datasets using CP1 model

The relative difficulty of different datasets can be visualized based on CP1 model.

Results

Additional Results

FNMR1000 rates for experiment 2

CP1 CP2 FT1 FT2 FT3 ENSEMBLE
fei_face_original 0.021956 0.0499 0.045908 0.073852 0.02994 0.043912
georgia_tech 0.311377 0.277445 0.421158 0.377246 0.369261 0.245509
sof_original 0.533333 0.462745 0.580392 0.52549 0.57451 0.407843
fei_face_frontal 0 0 0 0 0 0
youtube_faces 0.41 0.446 0.292 0.374 0.286 0.318
lfw 0.325349 0.437126 0.43513 0.303393 0.373253 0.46507
in_house_dataset 0.05 0.05 0.025 0.1 0.05 0.025

FNMR0 rates for experiment 2

CP1 CP2 FT1 FT2 FT3 ENSEMBLE
fei_face_original 0.021956 0.0499 0.045908 0.073852 0.02994 0.043912
georgia_tech 0.311377 0.277445 0.421158 0.377246 0.369261 0.245509
sof_original 0.533333 0.462745 0.580392 0.52549 0.57451 0.407843
fei_face_frontal 0 0 0 0 0 0
youtube_faces 0.41 0.446 0.292 0.374 0.286 0.318
lfw 0.325349 0.437126 0.43513 0.303393 0.373253 0.46507
in_house_dataset 0.05 0.05 0.025 0.1 0.05 0.025

These results indicate the performance of the explored models on the different datasets

Evaluation on using more data points for analysis from each dataset.

We run the multi dataset-trained models through a larger test-set from each dataset. We draw a single image at random for each identity to serve as the reference, and a single authentic and imposter image to act as probes for each identity. So, this test uses 2 tests per identity for each identity in each dataset. We present the 1000-sample test set in the paper as a) the results are easily reproducible and b) the size of the test is fixed (except for in-house data, which is only used for validation purposes).

Results on all identities (2*n pairs of images with n identities)

Result on 1000 pairs

EX1 CP1 CP2 FT1 FT2 FT3 Ensemble
fei_face_original 0.089984 0.015988 0.01498 0.009984 0.015992 0.010988 0.008984
georgia_tech 0.142884 0.04096 0.054958 0.059912 0.058926 0.057922 0.047976
sof_original 0.195122 0.073194 0.070898 0.058456 0.069386 0.066527 0.061094
fei_face_frontal 0.071429 0 0 0 0 0 0
youtube_faces 0.142902 0.052902 0.050948 0.041936 0.05597 0.04593 0.040948
lfw 0.17788 0.100892 0.089864 0.09087 0.109926 0.092878 0.08387
in_house_dataset 0.075 0.03125 0.0125 0.0125 0.0125 0.01875 0.0125

Masked face privacy

Conference Venue: AJCAI2021

Download the benchmark datasets

Dataset Name Website Instructions Download URL
UTKFace UTKFace Dataset Follow the downloading instructions https://drive.google.com/file/d/0BxYys69jI14kb2o4ajJwQ3FOUm8/view?usp=sharing&resourcekey=0-wviJQhRUIJUlUjFc86H0kg https://drive.google.com/file/d/0BxYys69jI14kNEt1SnNJN1Z2WWc/view?usp=sharing&resourcekey=0-iUnGnz7QyDHeZOYdHcMm4A https://drive.google.com/file/d/0BxYys69jI14kVkVTZHZHa21zUXM/view?usp=sharing&resourcekey=0-AzmPdtIpMfLjjRox3dEs-g

Downloading instructions

UTKFace
  1. Download the dataset using the given URLs.
  2. Download part1.tar.gz, part2.tar.gz and part3.tar.gz
  3. Unzip the files and get the images to UTKFace folder

Folder Structure after downloading the datasets

base_folder : Base folder for the dataset (This is where you unzip and copy UTKFaces folder)

  • UTKFace

Generate Synthetic masks to benchmark datasets

Install python 3.6. Then run the following command to install the requirements.

pip install -r requirements.txt

To apply synthetic masks on the datasets

python generate_mask_to_datasets.py --base_folder ../base_folder --new_dataset_folder ../benchmark_dataset

Summary of the datasets for AJCAI2021

Dataset Unmasked Images Masked Identities/ Images
UTKFace 24,107 23,004

Age buckets used for classification

Age group Age range
Baby 0-3 years
Child 4-12 years
Teenagers 13-19 years
Young 20-30 years
Adult 31-45 years
MiddleAged 46-60 years
Senior 61 and above years

Overall prediction comparison with confusion matrices

Overall accuracy for models

Results

Method Sex accuracy Race accuracy Age Accuracy
MAE RMSE
Previous implementations 0.9374 - - -
Our method with transforms 0.9401 0.8220 6.2788 8.4836
Our method without complex transforms 0.9361 0.8134 6.2168 8.3372

Regenerate attribute prediction accuracy results with transforms

Results for masked and no mask faces

Results

Unmasked face - SOTA Masked Face (Random Split) Masked Face (Uniform Split)
Sex 98.23% 94.01% 94.65%
Race 91.23% 82.20% 83.12%
Age (MAE) - Regression 5.44 6.21 -
Age - Classification 70.1% - 67.94%

Regenerate overall accuracy results

build Sex, Race, Age and Age Classification datasets using UTKFaces. Then execute utkfaces_dataset.py. dataset is the original UTKFACE dataset folder. output is the new masked dataset output directory.The types are age, race, sex and age_classification

cd AJCAI2021/dataset_util
python utkfaces_dataset.py --dataset "./utkfacesdataset_path" --output "../new_masked_utk_face_dataset_path" --type age

Download the models to AJCAI2021/dataset_util folder. Then configure the config.json for each model related dataset path, model path and accuracy type (mae or percentage). Then execute regenerate_overall_accuracy_results.py as follows.

cd AJCAI2021
python regenerate_overall_accuracy_results.py

License

MIT

Citation

If you use the repository for masked face identification, please use the following citation:

@INPROCEEDINGS{seneviratne2021multidataset, author={Seneviratne, Sachith and Kasthuriarachchi, Nuran and Rasnayaka, Sanka}, booktitle={2021 Digital Image Computing: Techniques and Applications (DICTA)}, title={Multi-Dataset Benchmarks for Masked Identification using Contrastive Representation Learning}, year={2021}, volume={}, number={}, pages={01-08}, doi={10.1109/DICTA52665.2021.9647194}}

If you use the repository for masked face privacy, please use the following citation:

@inproceedings{seneviratne2022does, title={Does a face mask protect my privacy?: Deep learning to predict protected attributes from masked face images}, author={Seneviratne, Sachith and Kasthuriarachchi, Nuran and Rasnayaka, Sanka and Hettiachchi, Danula and Shariffdeen, Ridwan}, booktitle={AI 2021: Advances in Artificial Intelligence: 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2--4, 2022, Proceedings}, pages={91--102}, year={2022}, organization={Springer} }

Acknowledgements

  • This project is supported by National Health and Medical Research Grant GA80134.
  • This research was undertaken using the LIEF HPC-GPGPU Facility hosted at the University of Melbourne. This Facility was established with the assistance of LIEF Grant LE170100200.
  • This research was undertaken using University of Melbourne Research Computing facilities established by the Petascale Campus Initiative.

About

Masked face recognition focuses on identifying people using their facial features while they are wearing masks. We introduce benchmarks on face verification based on masked face images for the development of COVID-safe protocols in airports.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages