title | emoji | colorFrom | colorTo | sdk | sdk_version | app_file | pinned | license |
---|---|---|---|---|---|---|---|---|
KTUGPT |
📚 |
blue |
purple |
gradio |
4.28.3 |
app.py |
false |
mit |
A Flask web application that is designed for answering questions based on the context from the PDFs. It uses the mistralai/Mistral-7B-Instruct-v0.1 model as the large language model (LLM) and the hkunlp/instructor-xl model for embedding text representations.
-
Clone this repository:
git clone https://github.com/sameemul-haque/KTUGPT-Python.git
-
After cloning the repository, navigate into the
KTUGPT-Python
directorycd KTUGPT-Python
-
Set up a Python virtual environment:
python -m venv venv
-
Activate the virtual environment:
- GNU/Linux | MacOS:
source venv/bin/activate
- Windows:
venv\Scripts\activate
- GNU/Linux | MacOS:
-
Install dependencies:
pip install -r requirements.txt
- Create a
.env
file based on.env.example
and add your Hugging Face API token and MongoDB Connection String
-
Run the app:
python app.py
Once the Flask app is running, you can send POST requests to http://127.0.0.1:5000
with a query parameter q
containing your question. The app will return an answer based on the configured language model and retrieval method. For example, http://127.0.0.1:5000/?q=what%20is%20operating%20system?