Skip to content

sc-zhang/bioscripts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This repository contains several scripts for bioinformatics.

Installation

git clone https://github.com/sc-zhang/bioscripts.git
cd bin
chmod +x *
# Optional, add following line to your ~/.bash_profile
export PATH=/path/to/bioscripts/bin:$PATH

Usage

  • approximate_cnv.py is a script for approximating CNV (Copy Number Variation) with read depth.
approximate_cnv.py -bam <bam_list_file> -g <genome_size> -l <read_length> -bed <bed_file> -o <out_file> [-t <thread_nums>]

Usage:
  -bam: a list file, each line is the full path of a bam file
  -g: the size of genome, integer
  -l: the length of read, integer
  -bed: bed file contain 4 columns: chromosome, start position, end position, gene name, seperate with tab
  -o: result file
  -t: threads, integer
  • average_fpkm.py is a script for calculating average of fpkm values.
# Dependencies
# Python modules: numpy
average_fpkm.py <in_fpkm> <out_avg>
  • blast2heatmap.py is a script for drawing heatmap with blast file of format 6.
# Dependencies
# Software: R, bedtools
# R modules: pheatmap
blast2heatmap.py <ref_fasta> <blast_file> <window_size> <out_name> <threshold_identify> <threshold_match>
  • calc_gap_cnt.py is a script for calculating gap count of all sequences.
calc_gap_cnt.py <in_fa>
  • calc_gene_ovlp_te.py is a script for calculating overlap ratio of genes with TE regions.
calc_gene_ovlp_te.py <gene_gff3> <TE_gffs> <ovlp_stat>
Usage:
  ovlp_stat: is the output file.
  • convert_collinearity_from_MCScanX_to_Circos.py is a script for converting collinearity file from MCScanX result to link file for Circos
convert_collinearity_from_MCScanX_to_Circos.py <collinearity_file> <gff_file> <out_file>
  • convert_gbff_to_fasta.py is a script for converting NCBI GBFF file to fasta file.
convert_gbff_to_fasta.py <in_gbff> <out_fasta>
  • convert_QTL_info.py is a script for converting QTL information of contig-level to chromosome-level with agp file.
convert_QTL_info.py <in_QTL> <in_agp> <out_QTL>
  • convert_simple_for_circos.py is a script for converting JCVI simple file to link file for circos.
convert_simple_for_circos.py <in_simple> <in_gff3_files> <out_link>
  • dup_dotplot.pl is a script for plotting dotplot with monoploid and polyploid.
dup_dotplot.pl -g reference_genome -r ref_id -q query_id -n number_of_dup -t threads
Usage:
    ref_id: reference cds and bed name, like: Sb, Sb.cds and Sb.bed must exist
    query_id: query cds and bed name, like: Os
    number_of_dup: number of duplications
    threads: default 1
  • eval_filled_gaps.py is a script for evaluating status that gaps been filled
eval_filled_gaps.py <ref_fasta> <query_fasta> <result_file>
  • extract_all_sv_from_nucmer_delta.py is a script for extracting SV from delta file generated by nucmer.
extract_all_sv_from_nucmer_delta.py <in_delta> <out_pre>
  • extract_gene_from_gff.py is a script for extracting genes from gff3 file with gene id list and generating a bed file.
extract_gene_from_gff.py <in_list> <in_gff> <out_bed>
  • extract_vcf.py is a script for extracting vcf with bed file
extract_vcf.py <in_vcf> <in_bed> <out_vcf>
  • filter_cds.py is a script for removing invalided CDS sequences.
filter_cds.py <in_cds> <out_cds>
  • find_gff_ovlp_regions.py is a script for getting overlap regions from gff3 file.
find_gff_ovlp_regions.py <in_gff3> <out_bed>
  • get_chr_len.py is a script for calculating length of chromosomes in fasta file
get_chr_len.py <fasta_file> <output_file> <T/F chr only>
  • get_genes_from_range.py is a script for getting genes with bed file.
get_genes_from_range.py <gff3_file> <bed_file> <output_file> <threshold>
  • get_genes_region_from_gff.py is a script for getting gene regions from gff3 file.
get_genes_region_from_gff.py <gene_list> <in_gff> <out_bed>
  • get_gff_with_list.py is a script for extracting gff3 file with gene IDs.
get_gff_with_list.py <in_gff> <in_list> <out_gff>
  • get_seq_from_range.py is a script for extracting sequence fragments with bed file.
get_seq_from_range.py <in_fasta> <in_bed> <out_fasta>
  • group_exon_and_intron.py is a script for classifying vcf positions to exon and intron.
group_exon_and_intron.py <input_gff> <input_vcf> <output_file>
  • group_SNP_exon_and_intron.py is a script for classifying SNP positions to exon and intron.
group_SNP_exon_and_intron.py <input_gff> <input_snp> <output_file>
  • merge_bed_regions.py is a script for merging bed files based on distance
merge_bed_regions.py <in_bed> <out_bed> <max_distance>
  • modify_geno_with_snp_mummer.py is a script for modifying columns in geno file with snp result generated by show-snps of mummer
modify_geno_with_snp_mummer.py <in_geno> <in_snp> <col> <out_geno>
  • nucmer_extract_all_sv.py is a script for running nucmer and extracting all SV.
# Dependencies
# Software: nucmer
nucmer_extract_all_sv.py <ref_fasta> <query_fasta> <out_pre> <threads>
  • nucmer_statistics.py & nucmer_statistics_all_sv.py are scripts for running nucmer and generating statistics.
nucmer_statistics.py <ref_fasta> <query_fasta> <out_pre> <threads>
nucmer_statistics_all_sv.py <ref_fasta> <query_fasta> <out_pre> <threads>
  • quick_extract_fastx.py is a script for extracting fasta or fastq file with list.
quick_extract_fastx.py <in_fastx|gz> <in_list> <out_fastx|gz>
  • quick_mask_genome.py is a script for masking genome with bed file.
quick_mask_genome.py <in_fasta> <in_bed> <out_fasta> <threshold> <threads>
  • remove_region_by_blast_result.py is a script for removing regions in chromosomes with blast results.
remove_region_by_blast_result.py <blast_results> <chr_len> <out_bed>
Usage:
  <blast_results> is a list of blast files seperated with comma
  • rename_ID.py is a script for sorting and renaming id with in_gff file, and renaming id in fasta files.
rename_ID.py <chr_prefix> <in_gff> <out_gff> <in_fasta> <out_fasta>
  • SentieonSNP_filter.py is a script for filtering vcf result generated by Sentieon.
usage: SentieonSNP_filter.py [-h] -b BASE -v VALIDATION [-r REPEAT] -o OUTPUT [-m MISSING_RATE] [-d MIN_DISTANCE]

options:
  -h, --help            show this help message and exit
  -b BASE, --base BASE  Input vcf file as base
  -v VALIDATION, --validation VALIDATION
                        Input vcf file as validation
  -r REPEAT, --repeat REPEAT
                        Repeat regions file, gff format
  -o OUTPUT, --output OUTPUT
                        Output vcf file based on base vcf file, compressed with gzip
  -m MISSING_RATE, --missing_rate MISSING_RATE
                        Missing rate threshold, percentage, default: 40
  -d MIN_DISTANCE, --min_distance MIN_DISTANCE
                        Minimum distance between two snp sites, default: 0
  • SeqStat.py is a script for generating statistics with fasta|fastq|bam file.
SeqStat.py <in_file> [out_stat]
  • SimContigs.py & SimCollapse.py are scripts for simulating collapsed contigs.
usage: SimContigs.py [-h] [--min MIN] [--max MAX] [-n N50] -i INPUT -o OUTPUT

options:
  -h, --help            show this help message and exit
  --min MIN             minimum length of contig, default: 15k, you can use both number or string end with k,m
  --max MAX             minimum length of contig, default: 5m, you can use both number or string end with k,m
  -n N50, --n50 N50     size of N50, default: 500k, you can use both number or string end with k,m
  -i INPUT, --input INPUT
                        origin fasta file of genome
  -o OUTPUT, --output OUTPUT
                        filename of simulated data


usage: SimCollapse.py [-h] -a A_CONTIGS -b B_CONTIGS -p PREFIX -o OUTPUT -s BLAST [-c COLLAPSE]

options:
  -h, --help            show this help message and exit
  -a A_CONTIGS, --a_contigs A_CONTIGS
                        first fasta file contain contigs generated by SimContigs.py
  -b B_CONTIGS, --b_contigs B_CONTIGS
                        second fasta file contain contigs generated by SimContigs.py
  -p PREFIX, --prefix PREFIX
                        prefix of contig file a and contig file b, divided by comma, like: HA, HB
  -o OUTPUT, --output OUTPUT
                        filename of simulated data
  -s BLAST, --blast BLAST
                        blast file with format 6, must use first file of input as query and second file as database
  -c COLLAPSE, --collapse COLLAPSE
                        persentage of collapse region size, like 5 means 5%, default: 10
  • simple_ANGSD.py & simple_ANGSD_without_errorCorrect.py are script for running ANGSD.
simple_ANGSD.py -l <species.list> -anc <outgroup.fasta> -r <region> [-out <out_group_name> -p <bam_path> -ref <ref.fasta>]
simple_ANGSD_without_errorCorrect.py -l <species.list> -r <region> [-out <out_group_name> -p <bam_path>]
Notice:
  -p: path of bam files, default is current path
  -out: name of outgroup, default is "Outgroup"
  • simple_JBrowser.py is a script for generating file for JBrowser
# etc/SimpleJBrowser.conf is a template config file for simple_JBrowser.py
simple_JBrowser.py -f <fasta_file> [--gff <gff_file> --bed <bed_file> --bam <bam_file> --bw <bigwig_file> --conf <config_file>]
  • SimSID.py is a script for simulating SNP, Insertions and Deletions.
usage: SimSID.py [-h] [-s SNP] [-i INSERTION] [--insert_length INSERT_LENGTH] [-d DELETION] [--delete_length DELETE_LENGTH] [--random_length] [-v] -r REF -o OUT

options:
  -h, --help            show this help message and exit
  -s SNP, --snp SNP     snp ratio of whole genome, percentage, default: 0.01
  -i INSERTION, --insertion INSERTION
                        insertion ratio of whole genome, percentage, default: 0.01
  --insert_length INSERT_LENGTH
                        max length of insertion, default: 10
  -d DELETION, --deletion DELETION
                        delection ratio of whole genome, percentage, default: 0.01
  --delete_length DELETE_LENGTH
                        max length of deletion, default: 10
  --random_length       use this argument for generate random length of indels
  -v, --verbose         print detail information
  -r REF, --ref REF     origin fasta file of genome
  -o OUT, --out OUT     prefix of simulated data
  • split_cmd_with_parts.py is a script for splitting cmd file.
split_cmd_with_parts.py <in_cmd_file> <num_parts> <out_str> <threads>
  • split_ctg_with_agp.py is a script for splitting contig fasta file into chromosome groups with agp file.
split_ctg_with_agp.py <in_fa> <in_agp> <out_dir>
  • split_fasta_by_chr.py is a script for splitting fasta into several files contain single chromosome.
split_fasta_by_chr.py <in_fasta> <out_dir>
  • split_fasta_by_count.py is a script for splitting fasta to several files with file size or sequence counts.
split_fasta_by_count.py <in_fasta> <S/F> <count> <out_dir>
  • split_fasta_by_id.py is a script for splitting fasta with id.
split_fasta_by_id.py <in_fasta> <out_dir>
  • StatAgp.py & StatAgpDetail.py are scripts for generating statistic with agp file.
StatAgp.py <in_agp>
StatAgpDetail.py <in_agp> <out_csv>
  • subVCF.py is a script for extracting vcf file with list file, default missing rate 0.4.
subVCF.py <in_vcf> <in_list> <out_vcf> [<missing_rate>]
  • transfer_gff3_with_agp.py is a script for transferring positions with old agp and new agp file.
transfer_gff3_with_agp.py <in_gff3> <in_old_agp> <in_new_agp> <out_gff3>
  • eval_synteny.py is a script for evaluating the assembly consistency between query genome and reference genome by mapping cds of reference genome to query genome and reference genome with gmap and extract bed files with jcvi, be sure that the query bed file only contain the chromosomes and/or contigs which you want evalute.
usage: eval_synteny.py [-h] -r REF -q QRY -p PAIR

options:
  -h, --help            show this help message and exit
  -r REF, --ref REF     ref.bed
  -q QRY, --qry QRY     qry.bed
  • get_seq_with_bed.py is a script for extracting sequences from fasta file with bed file, the bed file can contain 4 or 5 fields: [seq_id, start_pos, end_pos, out_id] or [seq_id, start_pos, end_pos, direct, out_id]
Usage: python get_seq_with_bed.py <in_fa> <in_bed> <out_fa>
  • convert_anchorwave.py is a script for convert anchorwave maf file to a table file, which contains 7 columns: "Ref id, start position, end position, query id, start position, end position, variant type"
usage: convert_anchorwave.py [-h] -i INPUT -o OUTPUT

options:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Input maf file
  -o OUTPUT, --output OUTPUT
                        Out put file
  • extract_fasta_with_bed.py is a script for extracting seq with bed file contain 5 colunms: "ID, start, end, direction, id", positions should be 1-based
Usage: python bin/extract_fasta_with_bed.py <in_fa> <in_bed> <out_fa>
Notice: bed should be 5 columns: "ID, start, end, direction, id", positions should be 1-based
  • convert_chr_to_ctg_with_agp.py is a script for converting chromosomes to contigs with AGP file.
Usage: python ./bin/convert_chr_to_ctg_with_agp.py <in_fa> <in_agp> <out_fa>
  • bam_cov.py is a script for calculating genome coverage ratio from bam file.
usage: bam_cov.py [-h] -b BAM -o OUTPUT [-t THREADS]

options:
  -h, --help            show this help message and exit
  -b BAM, --bam BAM     Input bam file, must be indexed
  -o OUTPUT, --output OUTPUT
                        Output statistic
  -t THREADS, --threads THREADS
                        Threads, default=10
  • sort_gff3.py is a script for sorting genes with chromosomes and positions, and generating new IDs.
Usage: python ./bin/sort_gff3.py <chr_prefix> <in_gff3> <out_gff3>
Notice: sort and rename id with in_gff by coordinate, the chromosome ID should be like: Chr01 for mono assembly, Chr01A for phased assembly.
Example: python ./bin/sort_gff3.py CB5 in.gff3 out.gff3

About

several scripts for bioinformatics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published