Skip to content

Natural logarithm of the cumulative distribution function (CDF)for a discrete uniform distribution.

License

Notifications You must be signed in to change notification settings

stdlib-js/stats-base-dists-discrete-uniform-logcdf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ba2dc70 · Dec 23, 2024

History

55 Commits
Dec 23, 2024
Jan 1, 2024
Oct 1, 2023
Sep 25, 2023
Jun 15, 2021
Oct 1, 2022
Apr 13, 2024
Dec 23, 2024
Jun 16, 2021
Aug 1, 2024
Aug 1, 2024
Mar 1, 2024
Aug 1, 2024
Sep 1, 2024
Sep 25, 2023
Jun 15, 2021
Jun 15, 2021
Dec 23, 2024
May 1, 2022
Dec 1, 2022
Feb 1, 2024
Mar 1, 2024
Jan 1, 2024
Feb 1, 2024
Aug 1, 2024
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Logarithm of Cumulative Distribution Function

NPM version Build Status Coverage Status

Evaluate the natural logarithm of the cumulative distribution function for a discrete uniform distribution.

The cumulative distribution function for a discrete uniform random variable is

F ( x ) = { 0 for  x < a x a + 1 b a + 1 for  a x < b 1 for  x b

where a is the minimum support and b is the maximum support. The parameters must satisfy a <= b.

Installation

npm install @stdlib/stats-base-dists-discrete-uniform-logcdf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var logcdf = require( '@stdlib/stats-base-dists-discrete-uniform-logcdf' );

logcdf( x, a, b )

Evaluates the natural logarithm of the cumulative distribution function (CDF) for a discrete uniform distribution with parameters a (minimum support) and b (maximum support).

var y = logcdf( 9.0, 0, 10 );
// returns ~-0.095

y = logcdf( 0.5, -2, 2 );
// returns ~-0.511

y = logcdf( -Infinity, 2, 4 );
// returns -Infinity

y = logcdf( Infinity, 2, 4 );
// returns 0.0

If a or b is not an integer value, the function returns NaN.

var y = logcdf( 2.0, 1, 5.5 );
// returns NaN

If provided a > b, the function returns NaN.

var y = logcdf( 0.5, 3, 2);
// returns NaN

If provided NaN for any parameter, the function returns NaN.

var y = logcdf( NaN, 0, 1 );
// returns NaN

y = logcdf( 0.0, NaN, 1 );
// returns NaN

y = logcdf( 0.0, 0, NaN );
// returns NaN

logcdf.factory( a, b )

Returns a function for evaluating the natural logarithm of the cumulative distribution function of a discrete uniform distribution with parameters a (minimum support) and b (maximum support).

var myLogCDF = logcdf.factory( 0, 10 );
var y = myLogCDF( 0.5 );
// returns ~-2.398

y = myLogCDF( 8.0 );
// returns ~-0.201

Examples

var randint = require( '@stdlib/random-base-discrete-uniform' );
var randu = require( '@stdlib/random-base-randu' );
var logcdf = require( '@stdlib/stats-base-dists-discrete-uniform-logcdf' );

var randa = randint.factory( 0, 10 );
var randb = randint.factory();
var a;
var b;
var x;
var v;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 15.0;
    a = randa();
    b = randb( a, a+randa() );
    v = logcdf( x, a, b );
    console.log( 'x: %d, a: %d, b: %d, ln(F(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), v.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


Copyright

Copyright © 2016-2024. The Stdlib Authors.