Tensorflow implementation for the results in the paper "Adversarial Dropout for Supervised and Semi-supervised Learning" (https://arxiv.org/abs/1707.03631)
This implementation is based on the Code from Takeru Miyato's repository at https://github.com/takerum/vat_tf (Thank for Takeru Miyato's Work)
This work was tested with Tensorflow 1.4.1, CUDA 8.0, python 2.7
CIFAR10 for semi-supervised learning
python cifar10.py
With Virtual Adversarial Dropout with KL loss
python train.py --dataset=cifar10 --data_dir=dataset/cifar10/ --log_dir=log/cifar10_semisup_VAdD-KL --method=VAdD --num_epochs=300 --mean_only_bn=True --aug_trans=True --aug_flip=True --sigma=0.15 --lamb_max=1.0 --delta=0.05
on Test
Check the branch, "experiments---TF1.1.0".