Skip to content

Create a deep-learning neural network to analyze and classify the success of charitable donations.

Notifications You must be signed in to change notification settings

susiexia/NeuralNetwork_Charity_Donation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NeuralNetwork_Charity_Donation

Project Background

  • Create a deep-learning neural network to analyze and classify the success of charitable donations in order to determine the future decisions of the company—only those projects likely to be a success will receive any future funding.

Dataset Information

A csv file containing more than 34,000 organizations that have received funding over the years.

Columns metadata:

  • EIN and NAME—Identification columns (irrelevant variables)

  • APPLICATION_TYPE—Charity Foundation application type (irrelevant variables)

  • AFFILIATION—Affiliated sector of industry (Features)

  • CLASSIFICATION—Government organization classification (Features)

  • USE_CASE—Use case for funding (Features)

  • ORGANIZATION—Organization type (Features)

  • STATUS—Active status (irrelevant variables)

  • INCOME_AMT—Income classification (Features)

  • SPECIAL_CONSIDERATIONS—Special consideration for application (irrelevant variables)

  • ASK_AMT—Funding amount requested (Features)

  • IS_SUCCESSFUL—Was the money used effectively (Target)

The model's structure

Total params: 8,903 Trainable params: 8,903 Non-trainable params: 0


Analysis Report

  1. In this deep-learning neural ntework model, there are total three hidden layers with 84, 50 and 20 neurons respectively. The input shape was (42,) and output layer's neurons was 1 (binary_classification). The optimizer is adam and loss metrics setting is binary_crossentropy.

  2. The model's predictive accuracy was under 75%, which means the model was not able to predict correctly whether or not a target company will be re-funded over 57% of the time.

  3. In order to try and improve the model predictive performance, I tried to remove outliers and noisy in ASK_AMT variable by using 3 times of zscore method. In addition, removing irrelerant variables provided a few improvement. remove_outliers.PNG

Despite of reducing dimensionality with PCA (Principal Component Analysis), the model's accuracy didn't significantly improve.

  1. I tried to add a LeakyReLU layer to deep-learning model, but it didn't work as I expected. Furthermore, adding some regularizers on nauron's kernel still failed.

Analysis Outcomes

The model's accuracy recording:

accuracy.PNG

About

Create a deep-learning neural network to analyze and classify the success of charitable donations.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published