Skip to content
View syerramilli's full-sized avatar
  • Evanston

Highlights

  • Pro

Organizations

@ShaastraWebops @The-WebOps-Club

Block or report syerramilli

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
syerramilli/README.md

I am a PhD candidate at Industrial Engineering & Management Sciences at Northwestern University. My research focuses on adaptive experimental design, applied machine learning, Gaussian processes, and uncertainty quantification.

Linkedin: https://www.linkedin.com/in/suraj-yerramilli/

Kaggle: https://www.kaggle.com/syerramilli/code

Google Scholar: https://scholar.google.com/citations?user=rIDtPLcAAAAJ&hl=en

Gists: https://gist.github.com/syerramilli

Overview of public repositories

Software libraries

  1. lvgp-bayes: A python library for estimating latent variable Gaussian process regression models using either point estimation or fully Bayesian (i.e. MCMC) methods. Related publication: https://doi.org/10.1137/22M1525600
  2. gp-bo: A python library for Bayesian optimization (BO) using Gaussian process as the surrogate model, built on top of BoTorch. While BoTorch has functions and classes for implementing BO, this library contains settings and models that I found to be useful in practice and in my research. The library can also be used with Optuna. See https://www.kaggle.com/code/syerramilli/ps3e11-catboost-bayesopt for an example.
  3. sysid: An R library for system-identification. The library contains routines for input design, simulation and standard estimation methods for understanding the subject of and developing data-driven models for linear-time invariant (LTI) systems. Related publication: https://doi.org/10.1109/INDIANCC.2017.7846451

Projects

  1. LSTMs for Hangman game: LSTM based approach for guessing the letters in the classic Hangman game.
  2. Shiny apps: Repository containing R shiny apps that I developed for showcasing various visualization aspects
  3. BNN project: Course project for evaluating several scalable approaches for Bayesian Neural Networks in terms of prediction accuracy, uncertainty quantification, and computation time.

Lab / Tutorial archives from teaching assignments:

  1. msia420-w2023-lab: Python labs for the Winter 2023 iteration of MSIA 420 Predictive Analytics II
  2. iems308-lab: Python tutorial for the Winter 2019 iteration of IEMS 308 Data Science & Analytics
  3. Scrapy tutorial: Web scraping tutorial prepared for the Spring 2023 iteration of DATA_ENG 300 Data Engineering Studio

Miscellaneous:

  1. Kaggle notebooks: A collection of (mostly Python) notebooks run on the Kaggle platform.

Pinned Loading

  1. lvgp-bayes lvgp-bayes Public

    Python 1 2

  2. msia420-w2023-lab msia420-w2023-lab Public

    Jupyter Notebook

  3. R-sysid R-sysid Public

    R 4 2

  4. iems308_lab iems308_lab Public

    Jupyter Notebook 1 2

  5. iems490bnn iems490bnn Public

    Python

  6. r-shiny-practice r-shiny-practice Public

    R