A Julia package for outlier detection in linear regression.
- Ordinary Least Squares, Weighted Least Squares, Basic diagnostics
- Hadi & Simonoff (1993)
- Kianifard & Swallow (1989)
- Sebert & Montgomery & Rollier (1998)
- Least Median of Squares
- Least Trimmed Squares
- Minimum Volume Ellipsoid (MVE)
- MVE & LTS Plot
- Billor & Chatterjee & Hadi (2006)
- Pena & Yohai (1995)
- Satman (2013)
- Satman (2015)
- Setan & Halim & Mohd (2000)
- Least Absolute Deviations (LAD)
- Least Trimmed Absolute Deviations (LTA)
- Hadi (1992)
- Marchette & Solka (2003) Data Images
- Satman's GA based LTS estimation (2012)
- Fischler & Bolles (1981) RANSAC Algorithm
- Minimum Covariance Determinant Estimator
- Imon (2005) Algorithm
- Barratt & Angeris & Boyd (2020) CCF algorithm
- Atkinson (1994) Forward Search Algorithm
- Summary
- BACON Algorithm (Billor & Hadi & Velleman (2000))
- Hadi (1994) Algorithm
- Depth based estimators (Regression depth, deepest regression, etc.)
- Theil & Sen estimator for mutliple regression
julia> ]
(@v1.5) pkg> add LinRegOutliers
or
julia> using Pgk
julia> Pkg.add("LinRegOutliers")
then
julia> using LinRegOutliers
to make all the stuff be ready!
julia> using LinRegOutliers
julia> # Regression setting for Hawkins & Bradu & Kass data
julia> reg = createRegressionSetting(@formula(y ~ x1 + x2 + x3), hbk)
julia> smr98(reg)
14-element Array{Int64,1}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
julia> py95(reg)["outliers"]
14-element Array{Int64,1}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
julia> reg = createRegressionSetting(@formula(calls ~ year), phones);
julia> lms(reg)
Dict{Any,Any} with 6 entries:
"stdres" => [2.42593, 1.62705, 0.550525, 0.584612, 0.155943, -0.272726, -0.608843, -1.03751, -0.448118, -0.228929 … 93.4182, 96.9692, 112.552, 127.209, 147.419, 174.108…
"S" => 1.08048
"outliers" => [14, 15, 16, 17, 18, 19, 20, 21]
"objective" => 0.43276
"coef" => [-56.3796, 1.16317]
"crit" => 2.5
julia> reg = createRegressionSetting(@formula(calls ~ year), phones);
julia> lts(reg)
Dict{Any,Any} with 6 entries:
"betas" => [-56.5219, 1.16488]
"S" => 1.10918
"hsubset" => [11, 10, 5, 6, 23, 12, 13, 9, 24, 7, 3, 4, 8]
"outliers" => [14, 15, 16, 17, 18, 19, 20, 21]
"scaled.residuals" => [2.41447, 1.63472, 0.584504, 0.61617, 0.197052, -0.222066, -0.551027, -0.970146, -0.397538, -0.185558 … 91.0312, 94.4889, 109.667, 123.943, 143.629, …
"objective" => 3.43133
julia> # Matrix of independent variables of Hawkins & Bradu & Kass data
julia> data = hcat(hbk.x1, hbk.x2, hbk.x3);
julia> dataimage(data)
You are probably the right contributor
- If you have statistics background
- If you like Julia
However, the second condition is more important because an outlier detection algorithm is just an algorithm. Reading the implemented methods is enough to implement new ones. Please follow the issues. Here is the a bunch of first shot introductions for new comers. Welcome and thank you in advance!
- Please use issues for a new future request or bug reports
- We are in #linregoutliers channel on Julia Slack for any discussion requires online chatting.