Skip to content

SIGIR 2023: Adapting Learned Sparse Retrieval to Long Documents

Notifications You must be signed in to change notification settings

thongnt99/lsr-long

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

Code for SIGIR 2023 paper: Adapting Learned Sparse Retrieval to Long Documents

Installation

  • Python packages
conda create --name lsr python=3.9.12
conda activate lsr
pip install -r requirements.txt
  • Anserini for inverted indexing & retrieval: Clone and compile anserini-lsr, a customized version of Anserini for learned sparse retrieval. When compiling, add -Dmaven.test.skip=true to skip the tests.

Downloading and spliting data

  • MSMARCO Documents
bash scripts/prepare_msmarco_doc.sh
  • TREC-Robust04
bash scripts/prepare_robust04.sh 

BM25 baselines

bash scripts/run_bm25_msmarco.sh 
bash scripts/run_bm25_robust04.sh 

Simple aggregation

To perform aggregation on MSMARCO, follow these steps. For TREC-Robust04, please modify the input and output files accordingly.

1. Running inferences on segments (passages) and queries:

  • segment inference (can be distributed on multiple gpus to speed up)
for i in {1..60}
do
input_path=data/msmarco_doc/splits_psg/part$(printf "%02d" $i)
output_path=data/msmarco_doc/vectors/part$(printf "%02d" $i)
batch_size=256
type='doc'
python -m lsr.inference --inp $input_path --out $output_path --type $type --bs $batch_size
done
  • query inference
input_path=data/msmarco_doc/msmarco-docdev-queries.tsv
output_path=data/msmarco_doc/query.tsv
batch_size=256
type='query'
python -m lsr.inference --inp $input_path --out $output_path --type $type --bs $batch_size

2. Aggregating

  • Representation aggregation
bash scripts/aggregate_rep_msmarco_doc.sh 
  • Score (max) aggregation
bash scripts/aggregate_score_msmarco_doc.sh

ExactSDM and SoftSDM

ExactSDM

  • Estimating weights/Evaluating on MSMARCO Documents
#Passages MRR@10 R@1000 Script
1 37.08 95.49 scripts/train_script_exact_sdm_long_reranker_1_psg.sh
2 37.45 96.51 scripts/train_script_exact_sdm_long_reranker_2_psg.sh
3 37.36 96.76 scripts/train_script_exact_sdm_long_reranker_3_psg.sh
4 37.03 96.71 scripts/train_script_exact_sdm_long_reranker_4_psg.sh
5 36.95 96.61 scripts/train_script_exact_sdm_long_reranker_5_psg.sh
  • Evaluating on TREC Robust04 (zero-shot)
bash scripts/evaluate_exact_sdm_trec_robust04.sh

SoftSDM

  • Estimating weights/Evaluating on MSMARCO Documents
    Note: using +model.window_sizes=[1,2] +model.proximity=8 generally leads to better performance on MSMARCO document but hurts TREC-Robust04 scores.
#Passages MRR@10 R@1000 Script
1 36.98 95.49 scripts/train_script_sdm_long_reranker_1_psg.sh
2 37.53 96.51 scripts/train_script_sdm_long_reranker_2_psg.sh
3 37.41 96.76 scripts/train_script_sdm_long_reranker_3_psg.sh
4 36.80 96.71 scripts/train_script_sdm_long_reranker_4_psg.sh
5 36.79 96.61 scripts/train_script_sdm_long_reranker_5_psg.sh
  • Evaluating on TREC Robust04 (zero-shot)
bash scripts/evaluate_sdm_trec_robust04.sh

Citing and Authors

If you find this repository helpful, please cite our following papers:

  • Adapting Learned Sparse Retrieval for Long Documents
@inproceedings{nguyen:sigir2023-llsr,
  author = {Nguyen, Thong and MacAvaney, Sean and Yates, Andrew},
  title = {Adapting Learned Sparse Retrieval for Long Documents},
  booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year = {2023}
}
  • A Unified Framework for Learned Sparse Retrieval
@inproceedings{nguyen2023unified,
  title={A Unified Framework for Learned Sparse Retrieval},
  author={Nguyen, Thong and MacAvaney, Sean and Yates, Andrew},
  booktitle={Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2--6, 2023, Proceedings, Part III},
  pages={101--116},
  year={2023},
  organization={Springer}
}

About

SIGIR 2023: Adapting Learned Sparse Retrieval to Long Documents

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published