It provides a framework to developers in AWML
to add analyses for 3D annotations in T4dataset easily.
With this framework, developers don't need to generate any info
files or rewrite their data loading for the dataset.
They only need to follow AnalysisCallbackInterface
to add the analyses they are interested in.
- Support priority: Tier B
- Supported dataset
- T4dataset
- [] NuScenes
- Other supported feature
- Distribution of categories
- Distribution of attributes in each category
- Distribution of sizes/orientation
- Add unit tests
- Run setup environment
- Run docker
docker run -it --rm --gpus all --shm-size=64g --name awml -p 6006:6006 -v $PWD/:/workspace -v $PWD/data:/workspace/data autoware-ml
Make sure the dataset follows the T4dataset format, note that it doesn't need any info
file
# T4dataset (base)
python tools/analysis_3d/run.py --config_path autoware_ml/configs/detection3d/dataset/t4dataset/base.py --data_root_path data/t4dataset/ --out_dir data/t4dataset/analyses/
- Add a new analysis to inherit
AnalysisCallbackInterface
as a callback, and implementrun()
, for example,tools/analysis_3d/callbacks/category_attribute.py
- Import the new analysis in
AnalysisRunner
, and add them to the list ofanalysis_callbacks
, for example,
self.analysis_callbacks: List[AnalysisCallbackInterface] = [
...
CategoryAttributeAnalysisCallback(
out_path=self.out_path,
category_name='bicycle',
analysis_dir='remapping_bicycle_attr',
remapping_classes=self.remapping_classes),
# This is the new CategoryAttributeAnalysisCallback
CategoryAttributeAnalysisCallback(
out_path=self.out_path,
category_name='vehicle.bus',
analysis_dir='vehicle_bus_attr'
),
]