Training and evaluation tools for 2D Detection.
- Support priority: Tier A
- Supported dataset
- COCO dataset
- T4dataset
- Other supported feature
- Add unit test
TBD
- (Choice) For traffic light recognition of fine detector
python3 tools/detection2d/create_data_t4dataset.py --config autoware_ml/configs/detection2d/dataset/t4dataset/tlr_finedetector.py --root_path ./data/tlr/ --data_name tlr -o ./data/tlr_pedcar
- If you need, change parameters for your experiment
- You can change experiment name by file name
- You can use docker command for training as below.
- See each projects for detail command of training and evaluation.
python tools/detection2d/train.py {config_file}
- You can use docker command for training as below.
docker run -it --rm --gpus '"device=1"' --name autoware-ml --shm-size=64g -d -v $PWD/:/workspace -v $PWD/data:/workspace/data autoware-ml bash -c '<command for each projects>'
- Evaluation
python tools/detection2d/test.py {config_file} {checkpoint_file}
python tools/detection2d/image_demo.py {image path} {config_file} --weights {pth_file}
See each projects