Original implementation of Common Space Variational Deep Embedding in PyTorch.
The code is tested with Python 3.8.3. A complete list of packages required is listed below:
Package | Version |
---|---|
pytorch | 1.5.1 |
numpy | 1.18.5 |
scikit-learn | 0.23.1 |
tensorboard | 2.0.0 |
├── README.md
│
├── configs
│ ├── embedding_size.json
│ ├── few-shot.json
│ ├── hidden_layers_1.json
│ ├── hidden_layers_2.json
│ ├── hidden_layers_3.json
│ ├── optimizer.json
│ ├── seen-unseen.json
│ └── zero-shot.json
│
├── datasets
│ ├── AWA1
│ ├── AWA2
│ ├── CUB
│ └── SUN
│
├── saved
│ └── csvade.pt
│
├── tensorboards
│ ├── experiments
│ └── models
│
├── main.py
├── models.py
├── train.py
├── data.py
└── utils.py
configs\
contains architecture configurations for various experiements (hyperparameter tuning)datasets\
contains AWA1, AWA2, CUB and SUN datasets in pt (pytorch) file formatsaved\
contains pretrained modelstensorboards\
contains tensorboard insights for pretained models- *.py files contains the actual project code (start from main)
*Some of the above directories may not be present in the repo due to size restriction but will auto-generate when you run the code.
*Link to data folder will be provided soon.
You can either run in single mode using a single set of options:
main.py --dataset AWA2 --num-shots 0 csvade
or in batch mode for hyperparameter turning
main.py --dataset AWA2 --num-shots 0 configs/embedding_size.json
for more options run:
main.py -h