Skip to content

toliz/CSVaDE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CSVaDE

Original implementation of Common Space Variational Deep Embedding in PyTorch.

Requirments

The code is tested with Python 3.8.3. A complete list of packages required is listed below:

Package Version
pytorch 1.5.1
numpy 1.18.5
scikit-learn 0.23.1
tensorboard 2.0.0

Project Structure

├── README.md
│
├── configs
│   ├── embedding_size.json
│   ├── few-shot.json
│   ├── hidden_layers_1.json
│   ├── hidden_layers_2.json
│   ├── hidden_layers_3.json
│   ├── optimizer.json
│   ├── seen-unseen.json
│   └── zero-shot.json
│
├── datasets
│   ├── AWA1
│   ├── AWA2
│   ├── CUB
│   └── SUN
│
├── saved
│   └── csvade.pt
│
├── tensorboards
│   ├── experiments
│   └── models
│
├── main.py
├── models.py
├── train.py
├── data.py
└── utils.py
  • configs\ contains architecture configurations for various experiements (hyperparameter tuning)
  • datasets\ contains AWA1, AWA2, CUB and SUN datasets in pt (pytorch) file format
  • saved\ contains pretrained models
  • tensorboards\ contains tensorboard insights for pretained models
  • *.py files contains the actual project code (start from main)

*Some of the above directories may not be present in the repo due to size restriction but will auto-generate when you run the code.

*Link to data folder will be provided soon.

Run

You can either run in single mode using a single set of options:

main.py --dataset AWA2 --num-shots 0 csvade

or in batch mode for hyperparameter turning

main.py --dataset AWA2 --num-shots 0 configs/embedding_size.json

for more options run:

main.py -h

About

Common Space Variational Deep Embeddings

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages