Deep learning face detection and recognition, implemented by pytorch. (pytorch实现的人脸检测和人脸识别)
-
Updated
Feb 21, 2024 - Python
Deep learning face detection and recognition, implemented by pytorch. (pytorch实现的人脸检测和人脸识别)
[High Performance / MAX 30 FPS] RaspberryPi3(RaspberryPi/Raspbian Stretch) or Ubuntu + Multi Neural Compute Stick(NCS/NCS2) + RealSense D435(or USB Camera or PiCamera) + MobileNet-SSD(MobileNetSSD) + Background Multi-transparent(Simple multi-class segmentation) + FaceDetection + MultiGraph + MultiProcessing + MultiClustering
RetinaFace (Single-stage Dense Face Localisation in the Wild, 2019) implemented (ResNet50, MobileNetV2 trained on single GPU) in Tensorflow 2.0+. This is an unofficial implementation. With Colab.
实现常用基于深度学习的人脸检测算法 华为媒体研究院 图文Caption、OCR识别、图视文多模态理解与生成相关方向工作或实习欢迎咨询 15757172165 https://guanfuchen.github.io/media/hw_zhaopin_20220724_tiny.jpg
Light Face Detection using PyTorch Lightning
Make faces blurred for videos using DNN
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
OpenVINO+NCS2/NCS+MutiModel(FaceDetection, EmotionRecognition)+MultiStick+MultiProcess+MultiThread+USB Camera/PiCamera. RaspberryPi 3 compatible. Async.
Face Traking Eyes using the RPI3 + NCS1/2(Intel Movidius Neural Compute Stick) based on OpenVINO Toolkit
Giriş Seviyesinden İleri Seviyeye Kadar Python ile Görüntü İşleme.. Nesne Tespiti, Nesne Takibi, Yüz Tespiti, Göz Algılama ve Göz Hareketleri Takibi, Beden Tespiti, El Hareketlerini Anlamlandırma, Şerit Takibi, Plaka Okuma vs. gibi resim, video ve gerçek zamanlı örnek uygulamalar
face-detection-yolov8
本项目是利用mtcnn网络和facenet网络实现了一个简单的人脸识别功能。整体流程大致如下:首先利用mtcnn网络进行人脸检测和人脸关键点(5个)提取;接着利用人脸关键点进行人脸校正(仿射变换);然后将校正之后的人脸图片送入facenet网络进行人脸特征(128维)提取;最后将提取到的人脸特征与底库中的人脸特征进行相似度计算(特征比对),完成人脸识别功能。
Code of Face-MagNet that was published in WACV18
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite
[Re-implementation] RetinaFace: Single-stage Dense Face Localisation in the Wild
pytorch实现的Pyramidbox 人脸检测模型, 对原来代码的部分模块进行了修改,更简洁高效
Add a description, image, and links to the facedetection topic page so that developers can more easily learn about it.
To associate your repository with the facedetection topic, visit your repo's landing page and select "manage topics."