The Visual Recognition Service uses deep learning algorithms to analyze images for scenes, objects, faces, text, and other subjects that can give you insights into your visual content. You can organize image libraries, understand an individual image, and create custom classifiers for specific results that are tailored to your needs.
Give it a try! Click the button below to fork into IBM DevOps Services and deploy your own copy of this application on the IBM Cloud.
-
You need a IBM Cloud account. If you don't have one, #. Experimental Watson Services are free to use.
-
Download and install the Cloud-foundry CLI tool if you haven't already.
-
Edit the
manifest.yml
file and change<application-name>
to something unique. The name you use determines the URL of your application. For example,<application-name>.mybluemix.net
.
---
declared-services:
visual-recognition-service:
label: watson_vision_combined
plan: free
applications:
- name: <application-name>
path: .
command: npm start
memory: 512M
services:
- visual-recognition-service
env:
NODE_ENV: production
- Connect to the IBM Cloud with the command line tool.
cf api https://api.ng.bluemix.net
cf login
- Create the Visual Recognition service in the IBM Cloud.
cf create-service watson_vision_combined free visual-recognition-service
cf create-service-key visual-recognition-service myKey
cf service-key visual-recognition-service myKey
- Create a
.env
file in the root directory by copying the sample.env.example
file using the following command:
cp .env.example .env
You will update the .env
with the information you retrieved in steps 5 and 6
The .env
file will look something like the following:
VISUAL_RECOGNITION_API_KEY=
- Install the dependencies you application need:
npm install
- Start the application locally:
npm start
-
Point your browser to http://localhost:3000.
-
Optional: Push the application to the IBM Cloud:
cf push
After completing the steps above, you are ready to test your application. Start a browser and enter the URL of your application.
<your application name>.mybluemix.net
For more details about developing applications that use Watson Developer Cloud services in the IBM Cloud, see Getting started with Watson Developer Cloud and the IBM Cloud.
VISUAL_RECOGNITION_API_KEY
: This is the API key for the vision service, used if you don't have one in your IBM Cloud account.PRESERVE_CLASSIFIERS
: Set if you don't want classifiers to be deleted after one hour. (optional)PORT
: The port the server should run on. (optional, defaults to 3000)OVERRIDE_CLASSIFIER_ID
: Set to a classifer ID if you want to always use a custom classifier. This classifier will be used instead of training a new one. (optional)
The sample images are the first 7 images when the site loads. They
are called from a Jade mixin found in
views/mixins/sampleImages.jade
. If you just want to replace those
images with different images, you can replace them in
public/images/samples
and they are numbered 1 - 7 and are jpg
formatted.
Adding new/different custom classifer bundles is much more invovled.
You can follow the template of the existing bundles found in
views/includes/train.jade
.
Or, you can train a custom classifier using the api or the form and then use the classifier ID.
When you train a custom classifier, the name of the classifier is displayed in the test form.
If you hover your mouse over the classifier name, the classifier ID will be shown in the tooltip. You can also click on the name, and it will toggle between the classifier name and the classifier ID.
You can then use this custom classifier id by placing it after the hash
in the request URL. For example, lets say you are running the system
locally, so the base URL is http://localhost:3000
and then you train
a classifier. This newly trained classifier might have an id like
SatelliteImagery_859438478
. If you wanted to use this classifier
instead of training a new one, you can navigate to
http://localhost:3000/train#SatelliteImagery_859438478
and use the
training form with your existing classifier.
This sample code is licensed under Apache 2.0. Full license text is available in LICENSE.
See CONTRIBUTING.
Find more open source projects on the IBM Github Page.