Video Β Β β’Β Β Install Β Β β’Β Β Paper Β Β β’Β Β Contact Us
The HeLiMOS pointcloud toolbox is a data processing software for moving object segmentation (MOS) in the HeLiPR dataset.
It includes an effective merging-and-splitting-based approach ((a) and (g) in the upper figure) for labeling four heterogeneous LiDAR sensors.
What we need are just minimal dependencies.
sudo apt-get install g++ build-essential libpcl-dev libeigen3-dev python3-pip python3-dev cmake -y
Next, clone and compile the HeLiPR-Pointcloud-Toolbox repository using git as follows:
git clone https://github.com/url-kaist/HeLiMOS-PointCloud-Toolbox.git
cd HeLiMOS-Pointcloud-Toolbox
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release && make -j 16
This toolbox consists of three modules: helimos_saver
, helimos_merger
, and helimos_propagator
!
helimos_saver
deskews and saves individual LiDAR data and pose data in the HeLiMOS format.
helimos_merger
synchronizes and combines the saved LiDAR data into a single merged cloud.
helimos_propagator
backpropagates the labeled points from the merged cloud to the individual clouds.
When you download a specific sequence of the HeLiPR dataset, you can see the following file structure:
${sequence.tar.gz} # /path/to/HeLiPR/sequence
βββ LiDAR
βΒ Β βββ Aeva
βΒ Β β βββ <timestamp>.bin
β β βββ ...
βΒ Β βββ Avia
βΒ Β β βββ <timestamp>.bin
β β βββ ...
βΒ Β βββ Ouster
βΒ Β β βββ <timestamp>.bin
β β βββ ...
βΒ Β βββ Velodyne
βΒ Β βββ <timestamp>.bin
β βββ ...
βββ LiDAR_GT
βΒ Β βββ Aeva_gt.txt
βΒ Β βββ Avia_gt.txt
βΒ Β βββ Ouster_gt.txt
βΒ Β βββ Velodyne_gt.txt
βββ Calibration
βββ Inertial_data
βββ stamp.csv
LiDAR
: the folder contains LiDAR point cloud, with filenames structured as<timestamp>.bin
.LiDAR_GT
: the folder contains individual LiDAR ground truth poses based on the INS system, in a TXT format structured as[timestamp, x, y, z, qx, qy, qz, qw]
.
For more detailed information, please refer to the HeLiPR website.
Refer to the config-helimos.yaml
file in config
folder, where you can find the following parameters:
Path:
binPath: "/path/to/HeLiPR/sequence/LiDAR/"
trajPath: "/path/to/HeLiPR/sequence/LiDAR_GT/"
savePath: "/path/to/HeLiMOS/sequence/Deskewed_LiDAR/"
binPath
: LiDAR folder path in the HeLiPR datasettrajPath
: LiDAR_GT folder path in the HeLiPR datasetsavePath
: path where the HeLiMOS dataset will be saved.
binPath
and trajPath
should be set to the actual paths of the HeLiPR dataset, and the savePath
should be set to the folder where you want to save the HeLiMOS dataset.
Note! Except for changing the path settings to your path, please do not change any other settings.
helimos_saver
converts the HeLiPR data format to the HeLiMOS data format.
HeLiMOS data format is similar to the SemanticKITTI format. For more detailed information, please refer to the SemanticKITTI website.
if you want to use helimos_saver
,
./helimos_saver
When you run helimos_saver
, the deskewed point clouds will be saved in the velodyne
folder.
and individual LiDAR poses will be saved as a poses.txt
file which contains the first 3 rows of a 4x4 homogeneous pose matrix [r11 r12 r13 tx r21 r22 r23 ty r31 r32 r33 tz]
.
And all calibration values are identity matrices, saved as calib.txt
.
${savePath} # /path/to/HeLiMOS/sequence/Deskewed_LiDAR
βββ Aeva
βΒ Β βββ calib.txt
βΒ Β βββ poses.txt
βΒ Β βββ velodyne
β βββ 000000.bin
β βββ 000001.bin
β βββ ...
βββ Avia
βΒ Β βββ calib.txt
βΒ Β βββ poses.txt
βΒ Β βββ velodyne
β βββ 000000.bin
β βββ 000001.bin
β βββ ...
βββ Ouster
β βββ calib.txt
β βββ poses.txt
β βββ velodyne
β βββ 000000.bin
β βββ 000001.bin
β βββ ...
βββ Velodyne
βββ calib.txt
βββ poses.txt
βββ velodyne
βββ 000000.bin
βββ 000001.bin
βββ ...
helimos_merger
synchronizes and merges four individual point clouds into a single, unified point cloud.
When you run this tool, the four point clouds captured around the same timestamp are merged into the Ouster frame and saved in the HeLiMOS format within a folder named Merged
.
if you want to use helimos_merger
,
./helimos_merger
Then you will obtain the following Merged scan data.
${savePath} # e.g., /path/to/HeLiMOS/sequence
βββ Aeva
βββ Avia
βββ Ouster
βββ Velodyne
βββ Merged
βββ calib.txt
βββ poses.txt
βββ velodyne
βββ 000000.bin
βββ 000001.bin
βββ ...
helimos_propagator
back-propagates MOS labels from the Merged scan to the four individual LiDAR scans.
The MOS labels from the Merged scan should be saved as a uint32_t
type .label
file like SemanticKITTI, and the label classes must follow the SemanticKITTI MOS classes.
This means that each label file should only include the following classes:
- 0: unlabeled
- 9: static
- 251: moving
Save the MOS .label
files in the Merged
- labels
folder, as shown below:
${savePath} # e.g., /path/to/HeLiMOS/sequence
βββ Aeva
βββ Avia
βββ Ouster
βββ Velodyne
βββ Merged
βββ calib.txt
βββ poses.txt
βββ velodyne
β βββ 000000.bin
β βββ 000001.bin
β βββ ...
βββ labels
βββ 000000.label
βββ 000001.label
βββ ...
Then, run the helimos_propagator
.
./helimos_propagator
Then you can get the propagated MOS labels for the four LiDARs.
${savePath} # e.g., /path/to/HeLiMOS/sequence
βββ Aeva
β βββ calib.txt
β βββ poses.txt
β βββ velodyne
β β βββ 000000.bin
β β βββ 000001.bin
β β βββ ...
β βββ labels
β βββ 000000.label
β βββ 000001.label
β βββ ...
βββ Avia
β βββ calib.txt
β βββ poses.txt
β βββ velodyne
β β βββ 000000.bin
β β βββ 000001.bin
β β βββ ...
β βββ labels
β βββ 000000.label
β βββ 000001.label
β βββ ...
βββ Ouster
β βββ calib.txt
β βββ poses.txt
β βββ velodyne
β β βββ 000000.bin
β β βββ 000001.bin
β β βββ ...
β βββ labels
β βββ 000000.label
β βββ 000001.label
β βββ ...
βββ Velodyne
β βββ calib.txt
β βββ poses.txt
β βββ velodyne
β β βββ 000000.bin
β β βββ 000001.bin
β β βββ ...
β βββ labels
β βββ 000000.label
β βββ 000001.label
β βββ ...
βββ Merged
βββ calib.txt
βββ poses.txt
βββ velodyne
β βββ 000000.bin
β βββ 000001.bin
β βββ ...
βββ labels
βββ 000000.label
βββ 000001.label
βββ ...
@misc{lim2024helimos,
title={HeLiMOS: A Dataset for Moving Object Segmentation in 3D Point Clouds From Heterogeneous LiDAR Sensors},
author={Hyungtae Lim and Seoyeon Jang and Benedikt Mersch and Jens Behley and Hyun Myung and Cyrill Stachniss},
year={2024},
eprint={2408.06328},
archivePrefix={arXiv},
primaryClass={cs.CV},
}
@misc{jung2023helipr,
title={HeLiPR: Heterogeneous LiDAR Dataset for inter-LiDAR Place Recognition under Spatial and Temporal Variations},
author={Minwoo Jung and Wooseong Yang and Dongjae Lee and Hyeonjae Gil and Giseop Kim and Ayoung Kim},
year={2023},
eprint={2309.14590},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
All point clouds are copyrighted by SNU RPM Labs and MOS labels are copyrighted by KAIST Urban Robotics Lab, and those are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License. This license requires proper attribution to the author for any use, prohibits commercial usage, and mandates that derivative works be licensed similarly.
- Seoyeon Jang (9uantum01
at
kaistdot
acdot
kr) - Hyungtae Lim (shapelim
at
mitdot
edu)