Skip to content

Commit

Permalink
final shortening of the talk
Browse files Browse the repository at this point in the history
  • Loading branch information
vale981 committed Jan 3, 2023
1 parent 074c747 commit 5972664
Showing 1 changed file with 68 additions and 49 deletions.
117 changes: 68 additions & 49 deletions talk_short/index.tex
Original file line number Diff line number Diff line change
Expand Up @@ -151,8 +151,6 @@ \subsection{Motivation}
\end{block}
\pause{}
\begin{itemize}[<+->]
\item won't call this \emph{heat-flow} because it isn't
\emph{the} thermodynamic heat flow
\item nevertheless: may be interesting \emph{qualitative} measure
for energy flow
\end{itemize}
Expand All @@ -176,6 +174,7 @@ \subsection{Technical Basics}
\item \(B_n=∑_{λ} g_λ\nth a_λ\nth\).
\end{itemize}
\end{frame}

\begin{frame}{What remains of the Bath?}
\begin{block}{Bath Correlation Function}
\[α(t-s) = \ev{B(t)B(s)} \qty(\overset{T=0}{=} ∑_λ
Expand All @@ -191,6 +190,7 @@ \subsection{Technical Basics}
\end{itemize}
\end{block}
\end{frame}

% \begin{frame}
% \begin{tikzpicture}
% \def\xmin{-.9}
Expand All @@ -215,46 +215,8 @@ \subsection{Technical Basics}
% \end{frame}


\begin{frame}{NMQSD (Zero Temperature)}
Open system dynamics formulated as a \emph{stochastic} differential equation:
\begin{equation}
\label{eq:multinmqsd}
∂_t\ket{ψ_t(\vb{η}^\ast_t)} = -\iu H(t) \ket{ψ_t(\vb{η}^\ast_t)} +
\vb{L}\cdot\vb{η}^\ast_t\ket{ψ_t(\vb{η}^\ast_t)} - ∑_{n=1}^N L_n^†(t)∫_0^t\dd{s}α_n(t-s)\fdv{\ket{ψ_t(\vb{η}^\ast_t)}}{η^\ast_n(s)},
\end{equation}
with
\begin{equation}
\label{eq:processescorr}
\begin{aligned}
\mathcal{M}(η_n(t)) &=0, & \mathcal{M}(η_n(t)η_m(s)) &= 0,
& \mathcal{M}(η_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s),
\end{aligned}
\end{equation}
by projecting on coherent bath states.\footnote{For details see:
\cite{Diosi1998Mar}}

System state can be recovered by averaging over \(η\)
\begin{equation}
\label{eq:recover_rho}
ρ_{\sys}(t) = \tr_{\bath}\bqty{\ketbra{ψ(t)}} =
\mathcal{M}_{\vb{η}_{t}^\ast}\bqty{\ketbra{ψ_t(\vb{η}_t)}{ψ_t(\vb{η}^\ast_t)}}.
\end{equation}
\end{frame}

\begin{frame}{HOPS}
Using \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
\begin{equation}
\label{eq:dops}
D_μ\nth(t) \equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
\end{equation}
and
\(
D^{\underline{\vb{k}}} \equiv
∏_{n=1}^N∏_{μ=1}^{M_n}
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\),
\(
ψ_{t}^{\kmat} \equiv D^\kmatψ_{t}\)
we find
\begin{multline}
\label{eq:multihops}
Expand All @@ -275,14 +237,6 @@ \section{Bath Observables with HOPS}
J = - \dv{\ev{H_\bath}}{t} = \ev{L^†∂_t B(t) + L∂_t B^†(t)}_\inter.
\end{equation}
\pause{} \ldots some manipulations \ldots{}\pause{}
\begin{block}{Result (NMQSD)}
\begin{equation}
\label{eq:final_flow_nmqsd}
J(t) = -\i \mathcal{M}_{η^\ast}\bra{\psi(η,
t)}L^†\dot{D}_t\ket{\psi(η^\ast,t)} + \cc
\end{equation}
\end{block}
with \(\dot{D}_t = ∫_0^t\dd{s} \dot{\alpha}(t-s)\fdv{η^\ast_s}\).\pause{}
\begin{block}{Result (HOPS)}
\begin{equation}
\label{eq:hopsflowfock}
Expand Down Expand Up @@ -396,7 +350,7 @@ \subsection{Otto Cycle}
\includegraphics{figs/otto/power}
\end{figure}
\begin{itemize}
\item \(\bar{P} = .0025\),
\item \(\bar{P} = 0.0025\),
\(η\approx 29\%\), \(T_{c}=1\), \(T_{h}=20\)
\item no tuning of parameters, except for resonant coupling
\item long bath memory \(ω_{c}=1\), but weak-ish coupling
Expand Down Expand Up @@ -809,6 +763,71 @@ \section{Other Projects}
\end{itemize}
\end{frame}

\begin{frame}{What remains of the Bath?}
\begin{block}{Bath Correlation Function}
\[α(t-s) = \ev{B(t)B(s)} \qty(\overset{T=0}{=} ∑_λ
\abs{g_λ}^2\,\eu^{-\iu ω_λ (t-s)})= \frac{1}{π} ∫J(ω) \eu^{-\iu ω
t}\dd{ω}\]
\end{block}
\pause
\begin{block}{Spectral Density}
\[J(ω) = π ∑_{λ} \abs{g_{λ}}^{2}δ(ω-ω_{λ})\]
\begin{itemize}
\item in thermodynamic limit \(\to\) smooth function
\item here usually: Ohmic SD \(J(ω)=η ω \eu^{-ω/ω_c}\) (think phonons)
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{NMQSD (Zero Temperature)}
Open system dynamics formulated as a \emph{stochastic} differential equation:
\begin{equation}
\label{eq:multinmqsd}
∂_t\ket{ψ_t(\vb{η}^\ast_t)} = -\iu H(t) \ket{ψ_t(\vb{η}^\ast_t)} +
\vb{L}\cdot\vb{η}^\ast_t\ket{ψ_t(\vb{η}^\ast_t)} - ∑_{n=1}^N L_n^†(t)∫_0^t\dd{s}α_n(t-s)\fdv{\ket{ψ_t(\vb{η}^\ast_t)}}{η^\ast_n(s)},
\end{equation}
with
\begin{equation}
\label{eq:processescorr}
\begin{aligned}
\mathcal{M}(η_n(t)) &=0, & \mathcal{M}(η_n(t)η_m(s)) &= 0,
& \mathcal{M}(η_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s),
\end{aligned}
\end{equation}
by projecting on coherent bath states.\footnote{For details see:
\cite{Diosi1998Mar}}

System state can be recovered by averaging over \(η\)
\begin{equation}
\label{eq:recover_rho}
ρ_{\sys}(t) = \tr_{\bath}\bqty{\ketbra{ψ(t)}} =
\mathcal{M}_{\vb{η}_{t}^\ast}\bqty{\ketbra{ψ_t(\vb{η}_t)}{ψ_t(\vb{η}^\ast_t)}}.
\end{equation}
\end{frame}
\begin{frame}{HOPS}
Using \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
\begin{equation}
\label{eq:dops}
D_μ\nth(t) \equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
\end{equation}
and
\(
D^{\underline{\vb{k}}} \equiv
∏_{n=1}^N∏_{μ=1}^{M_n}
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\),
\(
ψ_{t}^{\kmat} \equiv D^\kmatψ_{t}\)
we find
\begin{multline}
\label{eq:multihops}
\dot{ψ}_{t}^\kmat = \qty[-\iu H_\sys(t) + \vb{L}(t)\cdot\vb{η}_{t}^\ast -
∑_{n=1}^N∑_{μ=1}^{M_n}\kmat_{n,μ}W\nth_μ]ψ_{t}^\kmat \\+
\iu ∑_{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_n(t)ψ_{t}^{\kmat -
\mat{e}_{n,μ}} + \sqrt{\qty(\kmat_{n,μ} + 1)} L^†_n(t)ψ_{t}^{\kmat +
\mat{e}_{n,μ}} ].
\end{multline}
\end{frame}

\end{document}


Expand Down

0 comments on commit 5972664

Please # to comment.